import argparse import glob import os.path import gradio as gr import pickle import tqdm import json import MIDI from midi_synthesizer import synthesis in_space = os.getenv("SYSTEM") == "spaces" def find_midi(): if disable_channels is not None: disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels] else: disable_channels = [] max_token_seq = tokenizer.max_token_seq if prompt is None: input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64) input_tensor[0, 0] = tokenizer.bos_id # bos else: prompt = prompt[:, :max_token_seq] if prompt.shape[-1] < max_token_seq: prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])), mode="constant", constant_values=tokenizer.pad_id) input_tensor = prompt input_tensor = input_tensor[None, :, :] cur_len = input_tensor.shape[1] bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space) with bar: while cur_len < max_len: end = False hidden = model[0].run(None, {'x': input_tensor})[0][:, -1] next_token_seq = np.empty((1, 0), dtype=np.int64) event_name = "" for i in range(max_token_seq): mask = np.zeros(tokenizer.vocab_size, dtype=np.int64) if i == 0: mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id] if disable_patch_change: mask_ids.remove(tokenizer.event_ids["patch_change"]) if disable_control_change: mask_ids.remove(tokenizer.event_ids["control_change"]) mask[mask_ids] = 1 else: param_name = tokenizer.events[event_name][i - 1] mask_ids = tokenizer.parameter_ids[param_name] if param_name == "channel": mask_ids = [i for i in mask_ids if i not in disable_channels] mask[mask_ids] = 1 logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:] scores = softmax(logits / temp, -1) * mask sample = sample_top_p_k(scores, top_p, top_k) if i == 0: next_token_seq = sample eid = sample.item() if eid == tokenizer.eos_id: end = True break event_name = tokenizer.id_events[eid] else: next_token_seq = np.concatenate([next_token_seq, sample], axis=1) if len(tokenizer.events[event_name]) == i: break if next_token_seq.shape[1] < max_token_seq: next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])), mode="constant", constant_values=tokenizer.pad_id) next_token_seq = next_token_seq[None, :, :] input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1) cur_len += 1 bar.update(1) yield next_token_seq.reshape(-1) if end: break def create_msg(name, data): return {"name": name, "data": data} def run(search_prompt, mid=None): mid_seq = [] if mid == None: for m in meta_data: mid_seq.extend(m[1][17:]) mid_seq_ticks = m[1][16][1] break elif mid is not None: mid_seq = MIDI.midi2score(mid) init_msgs = [create_msg("visualizer_clear", None)] # for events in mid_seq: # init_msgs.append(create_msg("visualizer_append", events)) # yield mid_seq, None, None, init_msgs for i in range(len(mid_seq)-1): if mid_seq[i][0] == 'note': yield mid_seq, None, None, [create_msg("visualizer_append", mid_seq[i]), create_msg("progress", [i + 1, len(mid_seq)])] with open(f"output.mid", 'wb') as f: f.write(MIDI.score2midi([mid_seq_ticks, [mid_seq]])) audio = synthesis(MIDI.score2opus([mid_seq_ticks, [mid_seq]]), soundfont_path) yield mid_seq, "output.mid", (44100, audio), [create_msg("visualizer_end", None)] def cancel_run(mid_seq): if mid_seq is None: return None, None with open(f"output.mid", 'wb') as f: f.write(MIDI.score2midi(mid_seq)) audio = synthesis(MIDI.score2opus(mid_seq), soundfont_path) return "output.mid", (44100, audio), [create_msg("visualizer_end", None)] def load_javascript(dir="javascript"): scripts_list = glob.glob(f"{dir}/*.js") javascript = "" for path in scripts_list: with open(path, "r", encoding="utf8") as jsfile: javascript += f"\n" template_response_ori = gr.routes.templates.TemplateResponse def template_response(*args, **kwargs): res = template_response_ori(*args, **kwargs) res.body = res.body.replace( b'', f'{javascript}'.encode("utf8")) res.init_headers() return res gr.routes.templates.TemplateResponse = template_response class JSMsgReceiver(gr.HTML): def __init__(self, **kwargs): super().__init__(elem_id="msg_receiver", visible=False, **kwargs) def postprocess(self, y): if y: y = f"
{json.dumps(y)}
" return super().postprocess(y) def get_block_name(self) -> str: return "html" if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--share", action="store_true", default=False, help="share gradio app") parser.add_argument("--port", type=int, default=7860, help="gradio server port") parser.add_argument("--max-gen", type=int, default=1024, help="max") opt = parser.parse_args() soundfont_path = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" meta_data_path = "meta-data/LAMD_META_10000.pickle" models_info = {"generic pretrain model": ["skytnt/midi-model", ""], "j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"], "touhou finetune model": ["skytnt/midi-model-ft", "touhou/"]} print('Loading meta-data...') with open(meta_data_path, 'rb') as f: meta_data = pickle.load(f) print('Done!') load_javascript() app = gr.Blocks() with app: gr.Markdown("