File size: 8,128 Bytes
261f708
 
 
 
 
 
 
 
325e435
 
 
261f708
 
 
 
3fa5312
261f708
3fa5312
261f708
 
 
 
 
 
 
 
 
 
 
 
86ae8a5
261f708
86ae8a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261f708
86ae8a5
 
 
261f708
86ae8a5
 
22f1ac4
 
 
86ae8a5
 
 
 
 
 
22f1ac4
 
 
b62c4c6
22f1ac4
86ae8a5
 
261f708
86ae8a5
 
261f708
 
86ae8a5
261f708
 
9535c72
 
86ae8a5
 
 
261f708
86ae8a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f1ac4
 
9535c72
86ae8a5
261f708
 
2c850db
261f708
2c850db
67342fc
 
 
 
 
 
 
 
 
 
 
 
 
 
261f708
67342fc
 
261f708
67342fc
 
 
 
 
 
 
 
 
 
 
261f708
 
 
 
 
 
67342fc
261f708
 
 
 
67342fc
b81cbad
261f708
67342fc
 
 
 
 
 
 
 
 
 
261f708
67342fc
 
 
261f708
67342fc
261f708
67342fc
261f708
67342fc
 
9535c72
67342fc
22f1ac4
67342fc
261f708
9535c72
67342fc
 
 
 
 
 
 
 
 
 
 
 
 
9535c72
22f1ac4
67342fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261f708
 
 
 
053ba8a
4449b73
 
 
 
 
 
7455a77
4449b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261f708
 
3fa5312
261f708
 
6dcb9af
261f708
512971c
be8fae2
1982e95
261f708
be8fae2
 
bd479f9
1982e95
261f708
 
 
67342fc
22f1ac4
67342fc
 
 
261f708
 
67342fc
261f708
3fa5312
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# https://huggingface.co./spaces/asigalov61/MIDI-Search

import os

import time as reqtime
import datetime
from pytz import timezone

from sentence_transformers import SentenceTransformer
from sentence_transformers import util

import numpy as np

import gradio as gr

import copy
import random
import pickle

import zlib

from midi_to_colab_audio import midi_to_colab_audio

import TMIDIX

import matplotlib.pyplot as plt

#==========================================================================================================

def find_midi(title, artist):

    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()

    print('-' * 70)
    print('Req title:', title)
    print('Req artist:', artist)
    print('-' * 70)


    input_text = ''

    if title != '':
        input_text += title
    if artist != '':
        input_text += ' by ' + artist
    
    print('Searching...')

    query_embedding = model.encode([input_text])
    
    # Compute cosine similarity between query and each sentence in the corpus
    similarities = util.cos_sim(query_embedding, corpus_embeddings)

    top_ten_matches_idxs = np.argsort(-similarities)[0][:10].tolist()
   
    # Find the index of the most similar sentence
    closest_index = np.argmax(similarities)
    closest_index_match_ratio = max(similarities[0]).tolist()

    best_corpus_match = all_MIDI_files_names[closest_index]

    top_ten_matches = ''

    for t in top_ten_matches_idxs:
        top_ten_matches += str(all_MIDI_files_names[t][0]).title() + '\n'

    print('Done!')
    print('=' * 70)
    
    print('Match corpus index', closest_index)
    print('Match corpus ratio', closest_index_match_ratio)
    
    print('=' * 70)
    print('Done!')
    print('=' * 70)

    song_artist = best_corpus_match[0]
    song_artist_title = str(song_artist).title()
    zlib_file_name = best_corpus_match[1]

    print('Fetching MIDI score...')

    with open(zlib_file_name, 'rb') as f:
        compressed_data = f.read()
    
    # Decompress the data
    decompressed_data = zlib.decompress(compressed_data)
    
    # Convert the bytes back to a list using pickle
    scores_data = pickle.loads(decompressed_data)
    
    fnames = [f[0] for f in scores_data]
    
    fnameidx = fnames.index(song_artist)
    
    MIDI_score_data = scores_data[fnameidx][1]
    
    print('Rendering results...')
    print('=' * 70)
    print('MIDi Title:', song_artist_title)
    print('Sample INTs', MIDI_score_data[:12])
    print('=' * 70)
    
    if len(MIDI_score_data) != 0:
    
        song = MIDI_score_data
        song_f = []
        
        time = 0
        dur = 0
        vel = 90
        pitch = 0
        channel = 0
        
        patches = [-1] * 16
        
        channels = [0] * 16
        channels[9] = 1
        
        for ss in song:
    
            if 0 <= ss < 256:
            
              time += ss * 16
            
            if 256 <= ss < 512:
            
              dur = (ss-256) * 16
            
            if 512 <= ss <= 640:

                patch = (ss-512)
                
                if patch < 128:
            
                  if patch not in patches:
                    if 0 in channels:
                        cha = channels.index(0)
                        channels[cha] = 1
                    else:
                        cha = 15
            
                    patches[cha] = patch
                    channel = patches.index(patch)
                  else:
                    channel = patches.index(patch)
            
                if patch == 128:
                  channel = 9
                
            if 640 < ss < 768:

                ptc = (ss-640)

            if 768 < ss < 896:

                vel = (ss - 768)
            
                song_f.append(['note', time, dur, channel, ptc, vel, patch ])
    
    patches = [0 if x==-1 else x for x in patches]

    print('=' * 70)
    
    #===============================================================================
    
    output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
                                                          output_signature = 'Los Angeles MIDI Dataset Search',
                                                          output_file_name = song_artist_title,
                                                          track_name='Project Los Angeles',
                                                          list_of_MIDI_patches=patches
                                                          )
    
    new_fn = song_artist_title + '.mid'
        
    audio = midi_to_colab_audio(new_fn, 
                    soundfont_path=soundfont,
                    sample_rate=16000,
                    volume_scale=10,
                    output_for_gradio=True
                    )
    
    print('Done!')
    print('=' * 70)
    
    #========================================================
    
    output_midi_title = str(song_artist_title)
    output_midi_summary = str(top_ten_matches)
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi_title, return_plt=True)
    
    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', output_midi_summary)
    print('=' * 70) 
    
    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')
    
    return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot        
    
#==========================================================================================================

if __name__ == "__main__":

    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
    print('Loading files list...')
    
    all_MIDI_files_names = TMIDIX.Tegridy_Any_Pickle_File_Reader('all_MIDI_files_names')
    print('=' * 70)

    print('Loading MIDI corpus embeddings...')
    
    corpus_embeddings = np.load('MIDI_corpus_embeddings_all-mpnet-base-v2.npz')['data']
    print('Done!')
    print('=' * 70)

    print('Loading Sentence Transformer model...')
    model = SentenceTransformer('all-mpnet-base-v2')
    print('Done!')
    print('=' * 70)
    
    app = gr.Blocks()
    
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Advanced MIDI Search</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Search and explore 179k+ MIDI titles with sentence transformer</h1>")
        
        gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.MIDI-Search&style=flat)\n\n")

        gr.Markdown("# Enter any desired title, artist or both\n\n")
        
        title = gr.Textbox(label="Song Title", value="Family Guy")
        artist = gr.Textbox(label="Song Artist", value="TV Themes")
        submit = gr.Button(value='Search')
        gr.ClearButton(components=[title, artist])

        gr.Markdown("# Search results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Top ten MIDI matches")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
        
        run_event = submit.click(find_midi, [title, artist],
                                                  [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot ])
        
    app.launch()