Spaces:
Running
Running
File size: 8,377 Bytes
3888ab7 2278710 3888ab7 fc2b6d6 3888ab7 fc2b6d6 3888ab7 0ef2079 8c8ea80 fc2b6d6 8c8ea80 3888ab7 8c8ea80 3888ab7 fc2b6d6 8c8ea80 e06f0cf 8c8ea80 3888ab7 8c8ea80 3888ab7 8c8ea80 3888ab7 8c8ea80 3888ab7 ad3c084 3888ab7 ad3c084 3888ab7 eec4853 3888ab7 eec4853 1aa6fb6 eec4853 3888ab7 1aa6fb6 3888ab7 e469266 3888ab7 1aa6fb6 3888ab7 1aa6fb6 3888ab7 1aa6fb6 3888ab7 1aa6fb6 3888ab7 56ab42f 3888ab7 56ab42f 3888ab7 56ab42f 3888ab7 28aa919 3888ab7 8c8ea80 3888ab7 1aa6fb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import argparse
import glob
import os.path
import gradio as gr
import pickle
import tqdm
import json
import MIDI
from midi_synthesizer import synthesis
in_space = os.getenv("SYSTEM") == "spaces"
def find_midi():
if disable_channels is not None:
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
else:
disable_channels = []
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64)
input_tensor[0, 0] = tokenizer.bos_id # bos
else:
prompt = prompt[:, :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = prompt
input_tensor = input_tensor[None, :, :]
cur_len = input_tensor.shape[1]
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
with bar:
while cur_len < max_len:
end = False
hidden = model[0].run(None, {'x': input_tensor})[0][:, -1]
next_token_seq = np.empty((1, 0), dtype=np.int64)
event_name = ""
for i in range(max_token_seq):
mask = np.zeros(tokenizer.vocab_size, dtype=np.int64)
if i == 0:
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
if disable_patch_change:
mask_ids.remove(tokenizer.event_ids["patch_change"])
if disable_control_change:
mask_ids.remove(tokenizer.event_ids["control_change"])
mask[mask_ids] = 1
else:
param_name = tokenizer.events[event_name][i - 1]
mask_ids = tokenizer.parameter_ids[param_name]
if param_name == "channel":
mask_ids = [i for i in mask_ids if i not in disable_channels]
mask[mask_ids] = 1
logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:]
scores = softmax(logits / temp, -1) * mask
sample = sample_top_p_k(scores, top_p, top_k)
if i == 0:
next_token_seq = sample
eid = sample.item()
if eid == tokenizer.eos_id:
end = True
break
event_name = tokenizer.id_events[eid]
else:
next_token_seq = np.concatenate([next_token_seq, sample], axis=1)
if len(tokenizer.events[event_name]) == i:
break
if next_token_seq.shape[1] < max_token_seq:
next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
next_token_seq = next_token_seq[None, :, :]
input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1)
cur_len += 1
bar.update(1)
yield next_token_seq.reshape(-1)
if end:
break
def create_msg(name, data):
return {"name": name, "data": data}
def run(search_prompt, mid=None):
mid_seq = []
disable_patch_change = False
disable_channels = None
if mid == None:
mid_seq = []
for m in meta_data:
mid_seq.extend([m[1][17:-1]])
break
elif mid is not None:
mid_seq = MIDI.midi2score(mid)
init_msgs = [create_msg("visualizer_clear", None)]
# for events in mid_seq:
# init_msgs.append(create_msg("visualizer_append", events))
# yield mid_seq, None, None, init_msgs
for i in range(len(mid_seq)):
yield mid_seq, None, None, [create_msg("visualizer_append", mid_seq[i]), create_msg("progress", [i + 1, len(mid_seq)])]
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid_seq))
audio = synthesis(MIDI.score2opus(mid_seq), soundfont_path)
yield mid_seq, "output.mid", (44100, audio), [create_msg("visualizer_end", None)]
def cancel_run(mid_seq):
if mid_seq is None:
return None, None
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid_seq))
audio = synthesis(MIDI.score2opus(mid_seq), soundfont_path)
return "output.mid", (44100, audio), [create_msg("visualizer_end", None)]
def load_javascript(dir="javascript"):
scripts_list = glob.glob(f"{dir}/*.js")
javascript = ""
for path in scripts_list:
with open(path, "r", encoding="utf8") as jsfile:
javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>"
template_response_ori = gr.routes.templates.TemplateResponse
def template_response(*args, **kwargs):
res = template_response_ori(*args, **kwargs)
res.body = res.body.replace(
b'</head>', f'{javascript}</head>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = template_response
class JSMsgReceiver(gr.HTML):
def __init__(self, **kwargs):
super().__init__(elem_id="msg_receiver", visible=False, **kwargs)
def postprocess(self, y):
if y:
y = f"<p>{json.dumps(y)}</p>"
return super().postprocess(y)
def get_block_name(self) -> str:
return "html"
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
parser.add_argument("--max-gen", type=int, default=1024, help="max")
opt = parser.parse_args()
soundfont_path = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
meta_data_path = "meta-data/LAMD_META_10000.pickle"
models_info = {"generic pretrain model": ["skytnt/midi-model", ""],
"j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"],
"touhou finetune model": ["skytnt/midi-model-ft", "touhou/"]}
print('Loading meta-data...')
with open(meta_data_path, 'rb') as f:
meta_data = pickle.load(f)
print('Done!')
load_javascript()
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>MIDI Search</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.MIDI-Search&style=flat)\n\n"
"MIDI Search and Explore\n\n"
"Demo for [MIDI Search](https://github.com/asigalov61)\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/MIDI-Search/blob/main/demo.ipynb)"
" for faster running and longer generation"
)
js_msg = JSMsgReceiver()
with gr.Tabs():
with gr.TabItem("instrument prompt") as tab1:
search_prompt = gr.Textbox(label="search prompt")
with gr.TabItem("midi prompt") as tab2:
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
with gr.Accordion("options", open=False):
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
search_btn = gr.Button("search", variant="primary")
stop_btn = gr.Button("stop and output")
output_midi_seq = gr.Textbox()
output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container")
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
output_midi = gr.File(label="output midi", file_types=[".mid"])
run_event = search_btn.click(run, [search_prompt],
[output_midi_seq, output_midi, output_audio, js_msg])
stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio, js_msg], cancels=run_event, queue=False)
app.queue(1).launch(server_port=opt.port, share=opt.share, inbrowser=True) |