File size: 7,875 Bytes
7d723ab a44bbef 7d723ab a44bbef 7d723ab a44bbef 7d723ab a44bbef 7d723ab a44bbef 7d723ab a44bbef 7d723ab a44bbef 7d723ab a44bbef 7d723ab a44bbef 7d723ab a44bbef 7d723ab ff50814 7d723ab ff50814 7d723ab ff50814 7d723ab a44bbef 7d723ab a44bbef 7d723ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateMusic(input_title):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 2048
PAD_IDX = 780
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 32, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Descriptive_Music_Transformer_Trained_Model_20631_steps_0.3218_loss_0.8947_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.float16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
input_num_tokens = 2040
print('-' * 70)
#===============================================================================
print('=' * 70)
print('Loading helper functions...')
def txt2tokens(txt):
return [ord(char)+648 if 0 < ord(char) < 128 else 0+648 for char in txt.lower()]
def tokens2txt(tokens):
return [chr(tok-648) for tok in tokens if 0+648 < tok < 128+648 ]
print('=' * 70)
print('Generating...')
#@title Standard Text-to-Music Generator
#@markdown Generation settings
number_of_tokens_to_generate = input_num_tokens
number_of_batches_to_generate = 1 #@param {type:"slider", min:1, max:16, step:1}
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
print('=' * 70)
print('Descriptive Music Transformer Model Generator')
print('=' * 70)
outy = [777]
torch.cuda.empty_cache()
inp = [outy] * number_of_batches_to_generate
inp = torch.LongTensor(inp).cuda()
with ctx:
out = model.generate(inp,
number_of_tokens_to_generate,
temperature=temperature,
return_prime=True,
verbose=False)
out0 = out.tolist()
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
out1 = out0[0]
print('Sample INTs', out1[:12])
print('=' * 70)
generated_song_title = ''.join(tokens2txt(out1)).title()
print('Generated song title:', generated_song_title)
print('=' * 70)
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
chan = 0
for ss in song:
if 0 <= ss < 128:
time += ss * 32
if 128 <= ss < 256:
dur = (ss-128) * 32
if 256 <= ss < 2432:
chan = (ss-256) // 128
if chan < 9:
channel = chan
elif 9 < chan < 15:
channel = chan+1
elif chan == 15:
channel = 15
elif chan == 16:
channel = 9
pitch = (ss-256) % 128
if 2432 <= ss < 2440:
vel = (((ss-2432)+1) * 15)-1
song_f.append(['note', time, dur, channel, pitch, vel, chan*8 ])
fn1 = "Text-to-Music-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Text-to-Music Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = generated_song_title
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Descriptive Music Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>A music transformer that describes music it generates</h1>")
gr.Markdown(
"\n\n"
"Generate music based on a title of your imagination :)\n\n"
"Check out [Annotated MIDI Dataset](https://huggingface.co./datasets/asigalov61/Annotated-MIDI-Dataset) on Hugging Face!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Text-to-Music-Transformer/blob/main/Text_to_Music_Transformer.ipynb)"
" for faster execution and endless generation"
)
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Generated MIDI title")
output_midi_summary = gr.Textbox(label="Generated music description")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateMusic, [input_title],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
app.queue().launch() |