Spaces:
Running
Running
ashwinpatti
commited on
Commit
·
6b17b03
1
Parent(s):
46f9c2e
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
warnings.filterwarnings("ignore")
|
6 |
+
|
7 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
8 |
+
from openai.embeddings_utils import get_embedding, cosine_similarity
|
9 |
+
|
10 |
+
df = pd.read_pickle('/content/drive/MyDrive/apatti_movie_search/movie_data_embedding.pkl')
|
11 |
+
|
12 |
+
|
13 |
+
embedder = SentenceTransformer('all-mpnet-base-v2')
|
14 |
+
#embedder.to('cuda')
|
15 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-2-v2')
|
16 |
+
|
17 |
+
@st.experimental_memo(suppress_st_warning=True)
|
18 |
+
def search_bi_encoder(query,top_k=15):
|
19 |
+
query_embedding = embedder.encode(query)
|
20 |
+
df["bi_similarity"] = df.plot_embedding.apply(lambda x: cosine_similarity(x, query_embedding.reshape(768,-1)))
|
21 |
+
|
22 |
+
results = (
|
23 |
+
df.sort_values("bi_similarity", ascending=False)
|
24 |
+
.head(top_k))
|
25 |
+
|
26 |
+
resultlist = []
|
27 |
+
|
28 |
+
hlist = []
|
29 |
+
for r in results.index:
|
30 |
+
if results.title[r] not in hlist:
|
31 |
+
resultlist.append(
|
32 |
+
{
|
33 |
+
"name":results.title[r],
|
34 |
+
"bi_encoder_score": results.bi_similarity[r][0],
|
35 |
+
"year": results.year[r],
|
36 |
+
"language": results.language[r],
|
37 |
+
"cast":results.cast[r],
|
38 |
+
"plot":results['plot'][r],
|
39 |
+
"link":results.link[r]
|
40 |
+
})
|
41 |
+
hlist.append(results.title[r])
|
42 |
+
return resultlist
|
43 |
+
|
44 |
+
|
45 |
+
@st.experimental_memo(suppress_st_warning=True)
|
46 |
+
def search_cross_encoder(query,candidates):
|
47 |
+
cross_inp = [[query, candidate['plot']] for candidate in candidates]
|
48 |
+
cross_scores = cross_encoder.predict(cross_inp)
|
49 |
+
for idx in range(len(cross_scores)):
|
50 |
+
candidates[idx]['cross-score'] = cross_scores[idx]
|
51 |
+
|
52 |
+
sortedResult = sorted(candidates, key=lambda x: x['cross-score'], reverse=True)
|
53 |
+
return sortedResult
|
54 |
+
|
55 |
+
|
56 |
+
@st.experimental_memo(suppress_st_warning=True)
|
57 |
+
def search(query,top_k=15):
|
58 |
+
candidates = search_bi_encoder(query,top_k)
|
59 |
+
rankedResult = search_cross_encoder(query,candidates)
|
60 |
+
|
61 |
+
return rankedResult
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
x = st.slider('Select a value')
|
67 |
+
#st.subheader(f"Search Query: {query}")
|
68 |
+
search_query = st.text_input("Please Enter your search query here",value="What are the expectations for inflation for Australia?",key="text_input")
|
69 |
+
|