Ashish Soni
Update app.py
d44277d verified
import base64
import gradio as gr
import io
from PIL import Image
import spaces
from transformers import pipeline
def image_to_base64_str(pil_image: Image.Image) -> str:
"""
Converts a PIL image to a base64 encoded string.
Args:
pil_image (Image.Image): The PIL image to be converted.
Returns:
str: The base64 encoded string representation of the image.
"""
byte_arr = io.BytesIO()
pil_image.save(byte_arr, format='PNG')
byte_arr = byte_arr.getvalue()
return str(base64.b64encode(byte_arr).decode('utf-8'))
# Initialize Model
get_completion = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base", device=0)
@spaces.GPU(duration=120)
def captioner(input: Image.Image) -> str:
"""
Generate a caption for the given image using the BLIP-IMAGE-CAPTIONING-BASE model.
Args:
input (Image.Image): The input image for which to generate a caption.
Returns:
str: The generated caption text.
"""
base64_image = image_to_base64_str(input)
output = get_completion(base64_image)
return output[0]['generated_text']
####### GRADIO APP #######
title = """<h1 id="title"> Image Captioning with BLIP model </h1>"""
description = """
- The model used for Generating Captions [BLIP-IMAGE-CAPTIONING-BASE](https://huggingface.co./Salesforce/blip-image-captioning-base).
"""
css = '''
h1#title {
text-align: center;
}
'''
theme = gr.themes.Soft()
demo = gr.Blocks(css=css, theme=theme)
with demo:
gr.Markdown(title)
gr.Markdown(description)
interface = gr.Interface(fn=captioner,
inputs=[gr.Image(label="Upload image", type="pil")],
outputs=[gr.Textbox(label="Caption")],
allow_flagging="never",
examples= "example_images")
demo.launch()