Ashish Soni
model
68d8fd5
raw
history blame
746 Bytes
import torch, time
import clip
from PIL import Image
import lightning as L
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)
start_time = time.time()
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
logits_per_image, logits_per_text = model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
end_time = time.time()
print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]
print(f"Prediction time: {end_time - start_time} seconds")