Ashish Soni commited on
Commit
a936f80
·
verified ·
1 Parent(s): ecebc42

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -13
app.py CHANGED
@@ -1,4 +1,10 @@
1
  import gradio as gr
 
 
 
 
 
 
2
  import torch
3
  from transformers import ViTImageProcessor, AutoFeatureExtractor, AutoModelForImageClassification
4
 
@@ -9,20 +15,31 @@ model = AutoModelForImageClassification.from_pretrained("saved_model_files")
9
 
10
  labels = ['angular_leaf_spot', 'bean_rust', 'healthy']
11
 
 
 
 
 
12
 
13
- def classify(image):
14
- features = image_processor(image, return_tensors='pt')
15
- logits = model(features["pixel_values"])[-1]
16
- probability = torch.nn.functional.softmax(logits, dim=-1)
17
- probs = probability[0].detach().numpy()
18
- confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
19
- return confidences
20
 
21
- #### APP #####
 
 
 
 
 
 
 
 
 
 
 
 
22
  title = """<h1 id="title">Bean plant health predictor through images of leaves using ViT image classifier</h1>"""
23
 
24
  description = """
25
- Use Case: A farming company that is having issues with diseases affecting their bean plants. The farmers have to constantly monitor the leaves of the plants so that they can immediately treat the leaves if they show any signs of disease.
26
  We are asked to build a machine learning-based app they can deploy on a drone to quickly identify diseased plants.
27
 
28
 
@@ -43,8 +60,9 @@ demo = gr.Blocks(css=css, theme=theme)
43
  with demo:
44
  gr.Markdown(title)
45
  gr.Markdown(description)
 
 
 
 
46
 
47
-
48
- interface = gr.Interface(fn=classify, inputs="image", outputs="label")
49
-
50
- demo.launch()
 
1
  import gradio as gr
2
+
3
+ from PIL import Image
4
+
5
+ import spaces
6
+
7
+ from typing import Dict
8
  import torch
9
  from transformers import ViTImageProcessor, AutoFeatureExtractor, AutoModelForImageClassification
10
 
 
15
 
16
  labels = ['angular_leaf_spot', 'bean_rust', 'healthy']
17
 
18
+ @spaces.GPU(duration=240)
19
+ def classify(image: Image.Image) -> Dict[str, float]:
20
+ """
21
+ Classify an image of a bean plant leaf into one of several health categories.
22
 
23
+ Args:
24
+ image (Image.Image): The input image of the bean leaf to be classified.
 
 
 
 
 
25
 
26
+ Returns:
27
+ Dict[str, float]: A dictionary where the keys are the health labels
28
+ (e.g., 'angular_leaf_spot', 'bean_rust', 'healthy') and
29
+ the values are the confidence scores for each label.
30
+ """
31
+ features = image_processor(image, return_tensors='pt')
32
+ logits = model(features["pixel_values"])[-1]
33
+ probability = torch.nn.functional.softmax(logits, dim=-1)
34
+ probs = probability[0].detach().numpy()
35
+ confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
36
+ return confidences
37
+
38
+ ####### GRADIO APP #######
39
  title = """<h1 id="title">Bean plant health predictor through images of leaves using ViT image classifier</h1>"""
40
 
41
  description = """
42
+ Problem Statement: A farming company that is having issues with diseases affecting their bean plants. The farmers have to constantly monitor the leaves of the plants so that they can immediately treat the leaves if they show any signs of disease.
43
  We are asked to build a machine learning-based app they can deploy on a drone to quickly identify diseased plants.
44
 
45
 
 
60
  with demo:
61
  gr.Markdown(title)
62
  gr.Markdown(description)
63
+ interface = gr.Interface(fn=classify,
64
+ inputs="image",
65
+ outputs="label",
66
+ examples="images")
67
 
68
+ demo.launch()