File size: 1,870 Bytes
20b9fa6
 
b61c48d
20b9fa6
314fe32
20b9fa6
 
 
 
314fe32
 
20b9fa6
b61c48d
 
20b9fa6
 
 
 
 
 
bccfcd5
20b9fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
import torch
from transformers import ViTImageProcessor, AutoFeatureExtractor, AutoModelForImageClassification

image_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")

extractor = AutoFeatureExtractor.from_pretrained("saved_model_files")
model = AutoModelForImageClassification.from_pretrained("saved_model_files")

labels = ['angular_leaf_spot', 'bean_rust', 'healthy'] 


def classify(image):
  features = image_processor(image, return_tensors='pt')
  logits = model(features["pixel_values"])[-1]
  probability = torch.nn.functional.softmax(logits, dim=-1)
  probs = probability[0].detach().numpy()
  confidences = {label: float(probs[i]) for i, label in enumerate(labels)} 
  return confidences

#### APP #####
title = """<h1 id="title">Bean plant health predictor through images of leaves using ViT image classifier</h1>"""

description = """
Use Case: A farming company that is having issues with diseases affecting their bean plants. The farmers have to constantly monitor the leaves of the plants so that they can immediately treat the leaves if they show any signs of disease. 
We are asked to build a machine learning-based app they can deploy on a drone to quickly identify diseased plants.


Solution: Building a Leaf Classification App that focuses on image classification to quickly identify diseased plants.

- The Dataset used for finetuning the model [Beans](https://huggingface.co./datasets/beans). 
- The model used for classifying the images [Vision Transformer (base-sized model)](https://huggingface.co./google/vit-base-patch16-224).
"""

css = '''
h1#title {
  text-align: center;
}
'''
theme = gr.themes.Soft()
demo = gr.Blocks(css=css, theme=theme)

with demo:
  gr.Markdown(title)
  gr.Markdown(description)


  interface =  gr.Interface(fn=classify, inputs="image", outputs="label")

demo.launch()