import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import torch # Configuração da quantização quantization_config = BitsAndBytesConfig( load_in_4bit=True, # ou use True para 4-bit bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) # Inicializa o modelo e tokenizer model_name = "Orenguteng/Llama-3-8B-Lexi-Uncensored" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto", quantization_config=quantization_config ) def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( inputs["input_ids"], max_new_tokens=100, temperature=0.7, pad_token_id=tokenizer.eos_token_id ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Cria a interface iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="LLama Chat" ) iface.launch()