AstraBert
first commit
01554a7
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import VotingClassifier
from sklearn.ensemble import VotingClassifier, HistGradientBoostingClassifier, ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
from Bio.SeqUtils.ProtParam import ProteinAnalysis
from Bio.SeqUtils.CheckSum import crc32
from Bio.SeqUtils.CodonUsage import CodonAdaptationIndex
from Bio.SeqUtils.CodonUsageIndices import SharpEcoliIndex
from Bio.SeqUtils import six_frame_translations
from Bio.Seq import Seq
from Bio import SeqIO
import gzip
from math import floor
from sklearn.metrics import accuracy_score
from orfipy_core import orfs
import sys
import matplotlib.pyplot as plt
def load_data(infile):
"""Load data from infile if it is in fasta format (after having unzipped it, if it is zipped)"""
if infile.endswith(".gz"): # If file is gzipped, unzip it
y = gzip.open(infile, "rt", encoding="latin-1")
# Read file as fasta if it is fasta
if (
infile.endswith(".fasta.gz")
or infile.endswith(".fna.gz")
or infile.endswith(".fas.gz")
or infile.endswith(".fa.gz")
):
records = SeqIO.parse(y, "fasta")
sequences = {}
for record in records:
sequences.update({str(record.id): str(record.seq)})
y.close()
return sequences
else:
y.close()
raise ValueError("File is the wrong format")
# Read file directly as fasta if it is a not zipped fasta: handle also more uncommon extensions :-)
elif (
infile.endswith(".fasta")
or infile.endswith(".fna")
or infile.endswith(".fas")
or infile.endswith(".fa")
):
with open(infile, "r") as y:
records = SeqIO.parse(y, "fasta")
sequences = {}
for record in records:
sequences.update({str(record.id): str(record.seq)})
y.close()
return sequences
else:
raise ValueError("File is the wrong format")
def calculate_cai(dna, index=SharpEcoliIndex):
cai = CodonAdaptationIndex()
cai.set_cai_index(index)
if len(dna) % 3 == 0:
a = cai.cai_for_gene(dna)
else:
six_translated = six_frame_translations(dna)
n = six_translated.split("\n")
frames = {
"0;F": n[5],
"1;F": n[6],
"2;F": n[7],
"0;R": n[12],
"1;R": n[11],
"2;R": n[10],
}
ind = 0
for i in list(frames.keys()):
k = frames[i].replace(" ", "")
if "M" in k and "*" in k:
if i.split(";")[0] == "F" and k.index("M") < k.index("*"):
if len(k) <= len(dna) / 3:
ind = int(i.split("")[0])
break
elif i.split(";")[0] == "R" and k.index("M") > k.index("*"):
if len(k) <= len(dna) / 3:
ind = len(dna) - int(i.split("")[0])
break
if ind == 0:
cods = 3 * floor(len(dna) / 3)
dna = dna[:cods]
a = cai.cai_for_gene(dna)
elif 1 <= ind <= 2:
if len(dna[ind:]) % 3 == 0:
dna = dna[ind:]
else:
cods = 3 * floor((len(dna) - ind) / 3)
dna = dna[ind : cods + ind]
a = cai.cai_for_gene(dna)
else:
if len(dna[:ind]) % 3 == 0:
dna = dna[ind:]
else:
cods = 3 * floor((len(dna) - ind) / 3)
dna = dna[:cods]
a = cai.cai_for_gene(dna)
return a
def checksum(dna):
return crc32(dna)
def hidrophobicity(dna):
protein_sequence = str(Seq(dna).translate())
protein_sequence = protein_sequence.replace("*", "")
hydrophobicity_score = ProteinAnalysis(protein_sequence).gravy()
return hydrophobicity_score
def isoelectric_pt(dna):
protein_sequence = str(Seq(dna).translate())
protein_sequence = protein_sequence.replace("*", "")
isoelectric = ProteinAnalysis(protein_sequence).isoelectric_point()
return isoelectric
def aromatic(dna):
protein_sequence = str(Seq(dna).translate())
protein_sequence = protein_sequence.replace("*", "")
arom = ProteinAnalysis(protein_sequence).aromaticity()
return arom
def instable(dna):
protein_sequence = str(Seq(dna).translate())
protein_sequence = protein_sequence.replace("*", "")
inst = ProteinAnalysis(protein_sequence).instability_index()
return inst
def weight(dna):
protein_sequence = str(Seq(dna).translate())
protein_sequence = protein_sequence.replace("*", "")
wgt = ProteinAnalysis(protein_sequence).molecular_weight()
return wgt
def sec_struct(dna):
protein_sequence = str(Seq(dna).translate())
protein_sequence = protein_sequence.replace("*", "")
second_struct = ProteinAnalysis(protein_sequence).secondary_structure_fraction()
return ",".join([str(s) for s in second_struct])
def mol_ext(dna):
protein_sequence = str(Seq(dna).translate())
protein_sequence = protein_sequence.replace("*", "")
molar_ext = ProteinAnalysis(protein_sequence).molar_extinction_coefficient()
return ",".join([str(s) for s in molar_ext])
def longest_orf(coding):
keys_M_starting = [
key
for key in list(coding.keys())
if str(Seq(coding[key]).translate()).startswith("M")
]
M_starting = [
seq
for seq in list(coding.values())
if str(Seq(seq).translate()).startswith("M")
]
lengths = [len(seq) for seq in M_starting]
max_ind = lengths.index(max(lengths))
return {keys_M_starting[max_ind]: M_starting[max_ind]}
def predict_orf(seq, minlen=45, maxlen=18000, longest_M_starting_orf_only=True):
ls = orfs(seq, minlen=minlen, maxlen=maxlen)
coding = {}
count = 0
for start, stop, strand, description in ls:
count += 1
coding.update({f"ORF.{count}": seq[int(start) : int(stop)]})
if longest_M_starting_orf_only:
print(
"\n---------------------------\nWarning: option longest_M_starting_orf_only is set to True and thus you will get only the longest M-starting ORF; to get all the ORFs, set it to False\n---------------------------\n",
file=sys.stderr,
)
return longest_orf(coding)
return coding
def process_dna(fasta_file):
fas = load_data(fasta_file)
seqs = [seq for seq in list(fas.values())]
heads = [seq for seq in list(fas.keys())]
data = {}
proteins = {}
for i in range(len(seqs)):
coding = predict_orf(seqs[i])
open_reading_frames = list(coding.keys())
for key in open_reading_frames:
head = f"{heads[i]}.{key}"
proteins.update({head: str(Seq(coding[key]).translate())})
cai = calculate_cai(coding[key])
cksm = checksum(coding[key])
hydr = hidrophobicity(coding[key])
isl = isoelectric_pt(coding[key])
arm = aromatic(coding[key])
inst = instable(coding[key])
mw = weight(coding[key])
se_st = sec_struct(coding[key]).split(",")
se_st1 = se_st[0]
se_st2 = se_st[1]
se_st3 = se_st[2]
me = mol_ext(coding[key]).split(",")
me1 = me[0]
me2 = me[1]
n = pd.DataFrame(
{
"CAI": [cai],
"CHECKSUM": [cksm],
"HIDROPHOBICITY": [hydr],
"ISOELECTRIC": [isl],
"AROMATIC": [arm],
"INSTABLE": [inst],
"MW": [mw],
"HELIX": [se_st1],
"TURN": [se_st2],
"SHEET": [se_st3],
"MOL_EXT_RED": [me1],
"MOL_EXT_OX": [me2],
}
)
data.update({head: n})
return data, proteins
if __name__ == "__main__":
print("Loading data...")
# Load the data from the CSV file
data = pd.read_csv("../../data/scerevisiae.csv")
print("Loaded data")
print("Generating training and test data...")
# Features
X = data.iloc[:, 1:]
# Labels
y = data["ORF_TYPE"]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
print("Generated training and test data")
print("Building and training the model...")
# Create and train the Random Forest classifier
clf4 = DecisionTreeClassifier()
clf7 = HistGradientBoostingClassifier()
clf8 = ExtraTreesClassifier()
classifier = VotingClassifier([('dt', clf4), ('hgb', clf7), ('etc', clf8)], voting='hard')
model = classifier.fit(X, y) # Uncomment this line if clf needs training
# Make predictions on the test set
y_pred = model.predict(X)
# Evaluate the accuracy of the model
accuracy = accuracy_score(y, y_pred)
print(f"Accuracy: {accuracy}")
from joblib import dump
print("Saving model...")
dump(model, "SacCerML.joblib")
print("Saved")
print("All done")