Spaces:
Running
Running
File size: 4,977 Bytes
54d68f7 da1b766 d35c749 74c18cc 59daf6e 680cac7 97dec74 59daf6e 96b8b6e 9d16904 da1b766 f27f103 da1b766 f27f103 da1b766 54d68f7 da1b766 430da75 da1b766 1b2dc7d 7e68edc 1b2dc7d da1b766 1b2dc7d 74c18cc da1b766 1b2dc7d da1b766 1b2dc7d da1b766 54d68f7 da1b766 28f74e7 a018aaa 54d68f7 da1b766 8543bbc da1b766 f73d988 8543bbc da1b766 59daf6e 8543bbc 74c18cc da1b766 54d68f7 da1b766 1b2dc7d 680cac7 c05536c 680cac7 1b2dc7d f73d988 4edf6dd f73d988 41d3ea2 1b2dc7d 680cac7 c05536c 4a80288 6fa26b7 c254f78 55afa56 c254f78 087080b c254f78 087080b b6fc174 4a80288 680cac7 54d68f7 fe71bb9 02b03a5 fe71bb9 da1b766 087080b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
import requests
import json
import PIL.Image
from io import BytesIO
import os
import random
import datetime
def generate_image(prompt, negative_prompt, scheduler, steps, width, height, cfg, restore_faces):
request_time = datetime.datetime.now()
restore_faces = bool(restore_faces)
print(f"restore_faces: {restore_faces}, type: {type(restore_faces)}")
# Define the API endpoint
apiUrl = os.getenv("API_URL")
# Define the request headers
headers = {
"Content-Type": "application/json",
"token": os.getenv("API_TOKEN")
}
# Define the request body
body = {
"mode": "url",
"model": "Freedom.safetensors",
"tiling": False,
"batch_size": 1,
"prompt": prompt,
"negative_prompt": negative_prompt,
"seed":random.randint(0, 999999999),
"scheduler": scheduler,
"n_iter": 1,
"steps": steps,
"cfg": cfg,
"offset_noise": 0.0,
"width": width,
"height": height,
"clip_skip": 1,
"vae": "vae-ft-mse-840000-ema-pruned.ckpt",
"restore_faces": restore_faces,
"fr_model": "CodeFormer",
"codeformer_weight": 0.5,
"enable_hr": False,
"denoising_strength": 0.75,
"hr_scale": 2,
"hr_upscale": "None",
"img2img_ref_img_type": "piece",
"img2img_resize_mode": 0,
"img2img_denoising_strength": 0.75,
}
# Send the request
response = requests.post(apiUrl, headers=headers, data=json.dumps(body), verify=False)
# Print the response body if the status code is not 200
if response.status_code != 200:
print(response.text)
# Check the response status
if response.status_code == 200:
# Get the image URL from the response
response_json = response.json()
if 'results' in response_json and isinstance(response_json['results'], list) and len(response_json['results']) > 0:
image_url = response_json['results'][0]
# Get the image from the URL
image_response = requests.get(image_url)
image = PIL.Image.open(BytesIO(image_response.content))
# Log the information together
print(f"Request time: {request_time}\n"
f"Prompt: {prompt}\n"
f"Negative Prompt: {negative_prompt}\n"
f"Seed: {seed}\n"
f"Res(width x height): {width} x {height}\n"
f"Image URL: {image_url}")
return image
else:
raise Exception("Unexpected API response format")
else:
raise Exception("API request failed with status code " + str(response.status_code))
# Define the Gradio interface
iface = gr.Interface(
fn=generate_image,
inputs=[
gr.components.Textbox(label="Prompt"),
gr.components.Textbox(value="ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, blurry, bad anatomy, blurred, watermark, grainy, signature, cut off, draft", label="Negative Prompt"),
gr.components.Dropdown(choices=[
"Euler a",
"Euler",
"LMS",
"Heun",
"DPM2",
"DPM2 a",
"DPM++ 2S a",
"DPM++ 2M",
"DPM++ SDE",
"DPM fast",
"DPM adaptive",
"LMS Karras",
"DPM2 Karras",
"DPM2 a Karras",
"DPM++ 2S a Karras",
"DPM++ 2M Karras",
"DPM++ SDE Karras",
"DDIM",
"PLMS"
], label="Scheduler", value="DPM++ SDE Karras"),
gr.components.Slider(minimum=10, maximum=100, step=1.0,value=30, label="Steps"),
gr.components.Slider(minimum=512, maximum=1600, value=1024, label="Width"),
gr.components.Slider(minimum=512, maximum=1600, value=1024, label="Height"),
gr.components.Slider(minimum=4, maximum=12, step=0.5, value=7.0, label="CFG"),
gr.inputs.Checkbox(label="Restore Faces", default=False),
],
outputs=gr.components.Image(),
title="Freedom.Redmond Demonstration",
description = """
## Finetuned model of SD 2.1 768X produced by [@artificialguybr](https://twitter.com/artificialguybr).
## Resources
- The weights were released [here](https://civitai.com/models/87288/freedomredmond) with example prompts in CIVITAI and [here in HF](https://huggingface.co./artificialguybr/freedom).
## Demonstration
This demonstration is running on the [makeai.run API](https://www.makeai.run/).
## Acknowledgements
Thanks to [Redmond.ai](https://redmond.ai/) for providing GPU Time and sponsoring this model.
## Due to high demand, the generations are taking longer. Please wait and your image will be ready.
""",
allow_flagging='never'
)
#Adding queue
iface.queue(concurrency_count=12)
# Launch the app
iface.launch()
|