Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Functions for downloading pre-trained PixArt models | |
""" | |
from torchvision.datasets.utils import download_url | |
import torch | |
import os | |
import argparse | |
pretrained_models = { | |
'PixArt-Sigma-XL-2-512-MS.pth', 'PixArt-Sigma-XL-2-256x256.pth', 'PixArt-Sigma-XL-2-1024-MS.pth' | |
} | |
def find_model(model_name): | |
""" | |
Finds a pre-trained G.pt model, downloading it if necessary. Alternatively, loads a model from a local path. | |
""" | |
if model_name in pretrained_models: # Find/download our pre-trained G.pt checkpoints | |
return download_model(model_name) | |
else: # Load a custom PixArt checkpoint: | |
assert os.path.isfile(model_name), f'Could not find PixArt checkpoint at {model_name}' | |
return torch.load(model_name, map_location=lambda storage, loc: storage) | |
def download_model(model_name): | |
""" | |
Downloads a pre-trained PixArt model from the web. | |
""" | |
assert model_name in pretrained_models | |
local_path = f'output/pretrained_models/{model_name}' | |
if not os.path.isfile(local_path): | |
os.makedirs('output/pretrained_models', exist_ok=True) | |
web_path = f'https://huggingface.co./PixArt-alpha/PixArt-Sigma/resolve/main/{model_name}' | |
download_url(web_path, 'output/pretrained_models/') | |
model = torch.load(local_path, map_location=lambda storage, loc: storage) | |
return model | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model_names', nargs='+', type=str, default=pretrained_models) | |
args = parser.parse_args() | |
model_names = args.model_names | |
model_names = set(model_names) | |
# Download PixArt checkpoints | |
for model in model_names: | |
download_model(model) | |
print('Done.') | |