File size: 7,557 Bytes
7e60a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import time
import pytest

from tests.utils import wrap_test_forked
from src.enums import source_prefix, source_postfix
from src.prompter import generate_prompt

example_data_point0 = dict(instruction="Summarize",
                           input="Ducks eat seeds by the lake, then swim in the lake where fish eat small animals.",
                           output="Ducks eat and swim at the lake.")

example_data_point1 = dict(instruction="Who is smarter, Einstein or Newton?",
                           output="Einstein.")

example_data_point2 = dict(input="Who is smarter, Einstein or Newton?",
                           output="Einstein.")

example_data_points = [example_data_point0, example_data_point1, example_data_point2]


@wrap_test_forked
def test_train_prompt(prompt_type='instruct', data_point=0):
    example_data_point = example_data_points[data_point]
    return generate_prompt(example_data_point, prompt_type, '', False, False, False)


@wrap_test_forked
def test_test_prompt(prompt_type='instruct', data_point=0):
    example_data_point = example_data_points[data_point]
    example_data_point.pop('output', None)
    return generate_prompt(example_data_point, prompt_type, '', False, False, False)


@wrap_test_forked
def test_test_prompt2(prompt_type='human_bot', data_point=0):
    example_data_point = example_data_points[data_point]
    example_data_point.pop('output', None)
    res = generate_prompt(example_data_point, prompt_type, '', False, False, False)
    print(res, flush=True)
    return res


prompt_fastchat = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: I'm good</s>USER: Go to the market? ASSISTANT:"""

prompt_humanbot = """<human>: Hello!\n<bot>: Hi!\n<human>: How are you?\n<bot>: I'm good\n<human>: Go to the market?\n<bot>:"""

prompt_prompt_answer = "<|prompt|>Hello!<|endoftext|><|answer|>Hi!<|endoftext|><|prompt|>How are you?<|endoftext|><|answer|>I'm good<|endoftext|><|prompt|>Go to the market?<|endoftext|><|answer|>"

prompt_prompt_answer_openllama = "<|prompt|>Hello!</s><|answer|>Hi!</s><|prompt|>How are you?</s><|answer|>I'm good</s><|prompt|>Go to the market?</s><|answer|>"

prompt_mpt_instruct = """Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction
Hello!

### Response
Hi!

### Instruction
How are you?

### Response
I'm good

### Instruction
Go to the market?

### Response
"""

prompt_mpt_chat = """<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.
<|im_end|><|im_start|>user
Hello!<|im_end|><|im_start|>assistant
Hi!<|im_end|><|im_start|>user
How are you?<|im_end|><|im_start|>assistant
I'm good<|im_end|><|im_start|>user
Go to the market?<|im_end|><|im_start|>assistant
"""

prompt_falcon = """User: Hello!

Assistant: Hi!

User: How are you?

Assistant: I'm good

User: Go to the market?

Assistant:"""


@wrap_test_forked
@pytest.mark.parametrize("prompt_type,expected",
                         [
                             ('vicuna11', prompt_fastchat),
                             ('human_bot', prompt_humanbot),
                             ('prompt_answer', prompt_prompt_answer),
                             ('prompt_answer_openllama', prompt_prompt_answer_openllama),
                             ('mptinstruct', prompt_mpt_instruct),
                             ('mptchat', prompt_mpt_chat),
                             ('falcon', prompt_falcon),
                         ]
                         )
def test_prompt_with_context(prompt_type, expected):
    prompt_dict = None  # not used unless prompt_type='custom'
    langchain_mode = 'Disabled'
    chat = True
    model_max_length = 2048
    memory_restriction_level = 0
    keep_sources_in_context1 = False
    iinput = ''
    stream_output = False
    debug = False

    from src.prompter import Prompter
    from src.gen import history_to_context

    t0 = time.time()
    history = [["Hello!", "Hi!"],
               ["How are you?", "I'm good"],
               ["Go to the market?", None]
               ]
    print("duration1: %s %s" % (prompt_type, time.time() - t0), flush=True)
    t0 = time.time()
    context = history_to_context(history, langchain_mode, prompt_type, prompt_dict, chat,
                                 model_max_length, memory_restriction_level,
                                 keep_sources_in_context1)
    print("duration2: %s %s" % (prompt_type, time.time() - t0), flush=True)
    t0 = time.time()
    instruction = history[-1][0]

    # get prompt
    prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output)
    print("duration3: %s %s" % (prompt_type, time.time() - t0), flush=True)
    t0 = time.time()
    data_point = dict(context=context, instruction=instruction, input=iinput)
    prompt = prompter.generate_prompt(data_point)
    print(prompt)
    print("duration4: %s %s" % (prompt_type, time.time() - t0), flush=True)
    assert prompt == expected
    assert prompt.find(source_prefix) == -1


prompt_fastchat1 = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Go to the market? ASSISTANT:"""

prompt_humanbot1 = """<human>: Go to the market?\n<bot>:"""

prompt_prompt_answer1 = "<|prompt|>Go to the market?<|endoftext|><|answer|>"

prompt_prompt_answer_openllama1 = "<|prompt|>Go to the market?</s><|answer|>"

prompt_mpt_instruct1 = """Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction
Go to the market?

### Response
"""

prompt_mpt_chat1 = """<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.
<|im_end|><|im_start|>user
Go to the market?<|im_end|><|im_start|>assistant
"""

prompt_falcon1 = """User: Go to the market?

Assistant:"""


@pytest.mark.parametrize("prompt_type,expected",
                         [
                             ('vicuna11', prompt_fastchat1),
                             ('human_bot', prompt_humanbot1),
                             ('prompt_answer', prompt_prompt_answer1),
                             ('prompt_answer_openllama', prompt_prompt_answer_openllama1),
                             ('mptinstruct', prompt_mpt_instruct1),
                             ('mptchat', prompt_mpt_chat1),
                             ('falcon', prompt_falcon1),
                         ]
                         )
@wrap_test_forked
def test_prompt_with_no_context(prompt_type, expected):
    prompt_dict = None  # not used unless prompt_type='custom'
    chat = True
    iinput = ''
    stream_output = False
    debug = False

    from src.prompter import Prompter
    context = ''
    instruction = "Go to the market?"

    # get prompt
    prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output)
    data_point = dict(context=context, instruction=instruction, input=iinput)
    prompt = prompter.generate_prompt(data_point)
    print(prompt)
    assert prompt == expected
    assert prompt.find(source_prefix) == -1


@wrap_test_forked
def test_source():
    prompt = "Who are you?%s\nFOO\n%s" % (source_prefix, source_postfix)
    assert prompt.find(source_prefix) >= 0