File size: 43,135 Bytes
7e60a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
import os
import shutil
import tempfile
import pytest

from tests.utils import wrap_test_forked
from src.enums import DocumentChoices, LangChainAction
from src.gpt_langchain import get_persist_directory
from src.utils import zip_data, download_simple, get_ngpus_vis, get_mem_gpus, have_faiss, remove, get_kwargs

have_openai_key = os.environ.get('OPENAI_API_KEY') is not None

have_gpus = get_ngpus_vis() > 0

mem_gpus = get_mem_gpus()

# FIXME:
os.environ['TOKENIZERS_PARALLELISM'] = 'false'

db_types = ['chroma', 'weaviate']
db_types_full = ['chroma', 'weaviate', 'faiss']


@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run")
@wrap_test_forked
def test_qa_wiki_openai():
    return run_qa_wiki_fork(use_openai_model=True)


@pytest.mark.need_gpu
@wrap_test_forked
def test_qa_wiki_stuff_hf():
    # NOTE: total context length makes things fail when n_sources * text_limit >~ 2048
    return run_qa_wiki_fork(use_openai_model=False, text_limit=256, chain_type='stuff', prompt_type='human_bot')


@pytest.mark.xfail(strict=False,
                   reason="Too long context, improve prompt for map_reduce.  Until then hit: The size of tensor a (2048) must match the size of tensor b (2125) at non-singleton dimension 3")
@wrap_test_forked
def test_qa_wiki_map_reduce_hf():
    return run_qa_wiki_fork(use_openai_model=False, text_limit=None, chain_type='map_reduce', prompt_type='human_bot')


def run_qa_wiki_fork(*args, **kwargs):
    # disable fork to avoid
    # RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
    # because some other tests use cuda in parent
    # from tests.utils import call_subprocess_onetask
    # return call_subprocess_onetask(run_qa_wiki, args=args, kwargs=kwargs)
    return run_qa_wiki(*args, **kwargs)


def run_qa_wiki(use_openai_model=False, first_para=True, text_limit=None, chain_type='stuff', prompt_type=None):
    from src.gpt_langchain import get_wiki_sources, get_llm
    from langchain.chains.qa_with_sources import load_qa_with_sources_chain

    sources = get_wiki_sources(first_para=first_para, text_limit=text_limit)
    llm, model_name, streamer, prompt_type_out = get_llm(use_openai_model=use_openai_model, prompt_type=prompt_type)
    chain = load_qa_with_sources_chain(llm, chain_type=chain_type)

    question = "What are the main differences between Linux and Windows?"
    from src.gpt_langchain import get_answer_from_sources
    answer = get_answer_from_sources(chain, sources, question)
    print(answer)


def check_ret(ret):
    """
    check generator
    :param ret:
    :return:
    """
    rets = []
    for ret1 in ret:
        rets.append(ret1)
        print(ret1)
    assert rets


@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run")
@wrap_test_forked
def test_qa_wiki_db_openai():
    from src.gpt_langchain import _run_qa_db
    query = "What are the main differences between Linux and Windows?"
    ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=None,
                     langchain_mode='wiki',
                     langchain_action=LangChainAction.QUERY.value, langchain_agents=[])
    check_ret(ret)


@pytest.mark.need_gpu
@wrap_test_forked
def test_qa_wiki_db_hf():
    from src.gpt_langchain import _run_qa_db
    # if don't chunk, still need to limit
    # but this case can handle at least more documents, by picking top k
    # FIXME: but spitting out garbage answer right now, all fragmented, or just 1-word answer
    query = "What are the main differences between Linux and Windows?"
    ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=256,
                     langchain_mode='wiki',
                     langchain_action=LangChainAction.QUERY.value,
                     langchain_agents=[])
    check_ret(ret)


@pytest.mark.need_gpu
@wrap_test_forked
def test_qa_wiki_db_chunk_hf():
    from src.gpt_langchain import _run_qa_db
    query = "What are the main differences between Linux and Windows?"
    ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=256, chunk=True,
                     chunk_size=256,
                     langchain_mode='wiki',
                     langchain_action=LangChainAction.QUERY.value,
                     langchain_agents=[])
    check_ret(ret)


@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run")
@wrap_test_forked
def test_qa_wiki_db_chunk_openai():
    from src.gpt_langchain import _run_qa_db
    # don't need 256, just seeing how compares to hf
    query = "What are the main differences between Linux and Windows?"
    ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=256, chunk=True,
                     chunk_size=256,
                     langchain_mode='wiki',
                     langchain_action=LangChainAction.QUERY.value,
                     langchain_agents=[])
    check_ret(ret)


@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run")
@wrap_test_forked
def test_qa_github_db_chunk_openai():
    from src.gpt_langchain import _run_qa_db
    # don't need 256, just seeing how compares to hf
    query = "what is a software defined asset"
    ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=256, chunk=True,
                     chunk_size=256,
                     langchain_mode='github h2oGPT',
                     langchain_action=LangChainAction.QUERY.value,
                     langchain_agents=[])
    check_ret(ret)


@pytest.mark.need_gpu
@wrap_test_forked
def test_qa_daidocs_db_chunk_hf():
    from src.gpt_langchain import _run_qa_db
    # FIXME: doesn't work well with non-instruct-tuned Cerebras
    query = "Which config.toml enables pytorch for NLP?"
    ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True,
                     chunk_size=128,
                     langchain_mode='DriverlessAI docs',
                     langchain_action=LangChainAction.QUERY.value,
                     langchain_agents=[])
    check_ret(ret)


@pytest.mark.skipif(not have_faiss, reason="requires FAISS")
@wrap_test_forked
def test_qa_daidocs_db_chunk_hf_faiss():
    from src.gpt_langchain import _run_qa_db
    query = "Which config.toml enables pytorch for NLP?"
    # chunk_size is chars for each of k=4 chunks
    ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True,
                     chunk_size=128 * 1,  # characters, and if k=4, then 4*4*128 = 2048 chars ~ 512 tokens
                     langchain_mode='DriverlessAI docs',
                     langchain_action=LangChainAction.QUERY.value,
                     langchain_agents=[],
                     db_type='faiss',
                     )
    check_ret(ret)


@pytest.mark.need_gpu
@pytest.mark.parametrize("db_type", db_types)
@pytest.mark.parametrize("top_k_docs", [-1, 3])
@wrap_test_forked
def test_qa_daidocs_db_chunk_hf_dbs(db_type, top_k_docs):
    langchain_mode = 'DriverlessAI docs'
    langchain_action = LangChainAction.QUERY.value
    langchain_agents = []
    persist_directory = get_persist_directory(langchain_mode)
    remove(persist_directory)
    from src.gpt_langchain import _run_qa_db
    query = "Which config.toml enables pytorch for NLP?"
    # chunk_size is chars for each of k=4 chunks
    if top_k_docs == -1:
        # else OOMs on generation immediately when generation starts, even though only 1600 tokens and 256 new tokens
        model_name = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
    else:
        model_name = None
    ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True,
                     chunk_size=128 * 1,  # characters, and if k=4, then 4*4*128 = 2048 chars ~ 512 tokens
                     langchain_mode=langchain_mode,
                     langchain_action=langchain_action,
                     langchain_agents=langchain_agents,
                     db_type=db_type,
                     top_k_docs=top_k_docs,
                     model_name=model_name,
                     )
    check_ret(ret)


@pytest.mark.need_gpu
@pytest.mark.parametrize("db_type", ['chroma'])
@wrap_test_forked
def test_qa_daidocs_db_chunk_hf_dbs_switch_embedding(db_type):
    # need to get model externally, so don't OOM
    from src.gen import get_model
    base_model = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
    prompt_type = 'human_bot'
    all_kwargs = dict(load_8bit=False,
                      load_4bit=False,
                      load_half=True,
                      load_gptq=False,
                      use_safetensors=False,
                      use_gpu_id=True,
                      base_model=base_model,
                      tokenizer_base_model=base_model,
                      inference_server='',
                      lora_weights='',
                      gpu_id=0,

                      reward_type=False,
                      local_files_only=False,
                      resume_download=True,
                      use_auth_token=False,
                      trust_remote_code=True,
                      offload_folder=None,
                      compile_model=True,

                      verbose=False)
    model, tokenizer, device = get_model(reward_type=False,
                                         **get_kwargs(get_model, exclude_names=['reward_type'], **all_kwargs))

    langchain_mode = 'DriverlessAI docs'
    langchain_action = LangChainAction.QUERY.value
    langchain_agents = []
    persist_directory = get_persist_directory(langchain_mode)
    remove(persist_directory)
    from src.gpt_langchain import _run_qa_db
    query = "Which config.toml enables pytorch for NLP?"
    # chunk_size is chars for each of k=4 chunks
    ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False,
                     hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
                     model=model,
                     tokenizer=tokenizer,
                     model_name=base_model,
                     prompt_type=prompt_type,
                     text_limit=None, chunk=True,
                     chunk_size=128 * 1,  # characters, and if k=4, then 4*4*128 = 2048 chars ~ 512 tokens
                     langchain_mode=langchain_mode,
                     langchain_action=langchain_action,
                     langchain_agents=langchain_agents,
                     db_type=db_type,
                     )
    check_ret(ret)

    query = "Which config.toml enables pytorch for NLP?"
    # chunk_size is chars for each of k=4 chunks
    ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False,
                     hf_embedding_model='hkunlp/instructor-large',
                     model=model,
                     tokenizer=tokenizer,
                     model_name=base_model,
                     prompt_type=prompt_type,
                     text_limit=None, chunk=True,
                     chunk_size=128 * 1,  # characters, and if k=4, then 4*4*128 = 2048 chars ~ 512 tokens
                     langchain_mode=langchain_mode,
                     langchain_action=langchain_action,
                     langchain_agents=langchain_agents,
                     db_type=db_type,
                     )
    check_ret(ret)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_qa_wiki_db_chunk_hf_dbs_llama(db_type):
    from src.gpt4all_llm import get_model_tokenizer_gpt4all
    model_name = 'llama'
    model, tokenizer, device = get_model_tokenizer_gpt4all(model_name)

    from src.gpt_langchain import _run_qa_db
    query = "What are the main differences between Linux and Windows?"
    # chunk_size is chars for each of k=4 chunks
    ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True,
                     chunk_size=128 * 1,  # characters, and if k=4, then 4*4*128 = 2048 chars ~ 512 tokens
                     langchain_mode='wiki',
                     langchain_action=LangChainAction.QUERY.value,
                     langchain_agents=[],
                     db_type=db_type,
                     prompt_type='wizard2',
                     model_name=model_name, model=model, tokenizer=tokenizer,
                     )
    check_ret(ret)


@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run")
@wrap_test_forked
def test_qa_daidocs_db_chunk_openai():
    from src.gpt_langchain import _run_qa_db
    query = "Which config.toml enables pytorch for NLP?"
    ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=256, chunk=True,
                     chunk_size=256,
                     langchain_mode='DriverlessAI docs',
                     langchain_action=LangChainAction.QUERY.value,
                     langchain_agents=[])
    check_ret(ret)


@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run")
@wrap_test_forked
def test_qa_daidocs_db_chunk_openaiembedding_hfmodel():
    from src.gpt_langchain import _run_qa_db
    query = "Which config.toml enables pytorch for NLP?"
    ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=True, text_limit=None, chunk=True,
                     chunk_size=128,
                     langchain_mode='DriverlessAI docs',
                     langchain_action=LangChainAction.QUERY.value,
                     langchain_agents=[])
    check_ret(ret)


@pytest.mark.need_tokens
@wrap_test_forked
def test_get_dai_pickle():
    from src.gpt_langchain import get_dai_pickle
    with tempfile.TemporaryDirectory() as tmpdirname:
        get_dai_pickle(dest=tmpdirname)
        assert os.path.isfile(os.path.join(tmpdirname, 'dai_docs.pickle'))


@pytest.mark.need_tokens
@wrap_test_forked
def test_get_dai_db_dir():
    from src.gpt_langchain import get_some_dbs_from_hf
    with tempfile.TemporaryDirectory() as tmpdirname:
        get_some_dbs_from_hf(tmpdirname)


# repeat is to check if first case really deletes, else assert will fail if accumulates wrongly
@pytest.mark.parametrize("repeat", [0, 1])
@pytest.mark.parametrize("db_type", db_types_full)
@wrap_test_forked
def test_make_add_db(repeat, db_type):
    from src.gradio_runner import get_source_files, get_source_files_given_langchain_mode, get_db, update_user_db, \
        get_sources, update_and_get_source_files_given_langchain_mode
    from src.make_db import make_db_main
    from src.gpt_langchain import path_to_docs
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            with tempfile.TemporaryDirectory() as tmp_persistent_directory_my:
                with tempfile.TemporaryDirectory() as tmp_user_path_my:
                    msg1 = "Hello World"
                    test_file1 = os.path.join(tmp_user_path, 'test.txt')
                    with open(test_file1, "wt") as f:
                        f.write(msg1)
                    chunk = True
                    chunk_size = 512
                    langchain_mode = 'UserData'
                    db, collection_name = make_db_main(persist_directory=tmp_persistent_directory,
                                                       user_path=tmp_user_path,
                                                       add_if_exists=False,
                                                       collection_name=langchain_mode,
                                                       fail_any_exception=True, db_type=db_type)
                    assert db is not None
                    docs = db.similarity_search("World")
                    assert len(docs) == 1
                    assert docs[0].page_content == msg1
                    assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)

                    test_file1my = os.path.join(tmp_user_path_my, 'test.txt')
                    with open(test_file1my, "wt") as f:
                        f.write(msg1)
                    dbmy, collection_namemy = make_db_main(persist_directory=tmp_persistent_directory_my,
                                                           user_path=tmp_user_path_my,
                                                           add_if_exists=False,
                                                           collection_name='MyData',
                                                           fail_any_exception=True, db_type=db_type)
                    db1 = [dbmy, 'foouuid']
                    assert dbmy is not None
                    docs1 = dbmy.similarity_search("World")
                    assert len(docs1) == 1
                    assert docs1[0].page_content == msg1
                    assert os.path.normpath(docs1[0].metadata['source']) == os.path.normpath(test_file1my)

                    # some db testing for gradio UI/client
                    get_source_files(db=db)
                    get_source_files(db=dbmy)
                    get_source_files_given_langchain_mode(db1, langchain_mode=langchain_mode, dbs={langchain_mode: db})
                    get_source_files_given_langchain_mode(db1, langchain_mode='MyData', dbs=None)
                    get_db(db1, langchain_mode='UserData', dbs={langchain_mode: db})
                    get_db(db1, langchain_mode='MyDatta', dbs=None)

                    msg1up = "Beefy Chicken"
                    test_file2 = os.path.join(tmp_user_path, 'test2.txt')
                    with open(test_file2, "wt") as f:
                        f.write(msg1up)
                    test_file2_my = os.path.join(tmp_user_path_my, 'test2my.txt')
                    with open(test_file2_my, "wt") as f:
                        f.write(msg1up)
                    kwargs = dict(use_openai_embedding=False,
                                  hf_embedding_model='hkunlp/instructor-large',
                                  caption_loader=False,
                                  enable_captions=False,
                                  captions_model="Salesforce/blip-image-captioning-base",
                                  enable_ocr=False,
                                  verbose=False,
                                  is_url=False, is_txt=False)
                    z1, z2, source_files_added, exceptions = update_user_db(test_file2_my, db1, chunk,
                                                                            chunk_size,
                                                                            'MyData',
                                                                            dbs=None, db_type=db_type,
                                                                            **kwargs)
                    assert z1 is None
                    assert 'MyData' == z2
                    assert 'test2my' in str(source_files_added)
                    assert len(exceptions) == 0
                    z1, z2, source_files_added, exceptions = update_user_db(test_file2, db1, chunk, chunk_size,
                                                                            langchain_mode,
                                                                            dbs={langchain_mode: db},
                                                                            db_type=db_type,
                                                                            **kwargs)
                    assert 'test2' in str(source_files_added)
                    assert langchain_mode == z2
                    assert z1 is None
                    docs_state0 = [x.name for x in list(DocumentChoices)]
                    get_sources(db1, langchain_mode, dbs={langchain_mode: db}, docs_state0=docs_state0)
                    get_sources(db1, 'MyData', dbs=None, docs_state0=docs_state0)
                    kwargs2 = dict(first_para=False,
                                   text_limit=None, chunk=chunk, chunk_size=chunk_size,
                                   user_path=tmp_user_path, db_type=db_type,
                                   load_db_if_exists=True,
                                   n_jobs=-1, verbose=False)
                    update_and_get_source_files_given_langchain_mode(db1, langchain_mode, dbs={langchain_mode: db},
                                                                     **kwargs2)
                    update_and_get_source_files_given_langchain_mode(db1, 'MyData', dbs=None, **kwargs2)

                    assert path_to_docs(test_file2_my)[0].metadata['source'] == test_file2_my
                    assert os.path.normpath(
                        path_to_docs(os.path.dirname(test_file2_my))[1].metadata['source']) == os.path.normpath(
                        os.path.abspath(test_file2_my))
                    assert path_to_docs([test_file1, test_file2, test_file2_my])[0].metadata['source'] == test_file1

                    assert path_to_docs(None, url='arxiv:1706.03762')[0].metadata[
                               'source'] == 'http://arxiv.org/abs/2002.05202v1'
                    assert path_to_docs(None, url='http://h2o.ai')[0].metadata['source'] == 'http://h2o.ai'

                    assert 'user_paste' in path_to_docs(None,
                                                        text='Yufuu is a wonderful place and you should really visit because there is lots of sun.')[
                        0].metadata['source']

                if db_type == 'faiss':
                    # doesn't persist
                    return

                # now add using new source path, to original persisted
                with tempfile.TemporaryDirectory() as tmp_user_path3:
                    msg2 = "Jill ran up the hill"
                    test_file2 = os.path.join(tmp_user_path3, 'test2.txt')
                    with open(test_file2, "wt") as f:
                        f.write(msg2)
                    db, collection_name = make_db_main(persist_directory=tmp_persistent_directory,
                                                       user_path=tmp_user_path3,
                                                       add_if_exists=True,
                                                       fail_any_exception=True, db_type=db_type,
                                                       collection_name=collection_name)
                    assert db is not None
                    docs = db.similarity_search("World")
                    if db_type == 'weaviate':
                        # FIXME: weaviate doesn't know about persistent directory properly
                        assert len(docs) == 4
                        assert docs[0].page_content == msg1
                        assert docs[1].page_content in [msg2, msg1up]
                        assert docs[2].page_content in [msg2, msg1up]
                        assert docs[3].page_content in [msg2, msg1up]
                        assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)

                        docs = db.similarity_search("Jill")
                        assert len(docs) == 4
                        assert docs[0].page_content == msg2
                        assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file2)
                    else:
                        assert len(docs) == 3
                        assert docs[0].page_content == msg1
                        assert docs[1].page_content in [msg2, msg1up]
                        assert docs[2].page_content in [msg2, msg1up]
                        assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)

                        docs = db.similarity_search("Jill")
                        assert len(docs) == 3
                        assert docs[0].page_content == msg2
                        assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file2)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_zip_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            msg1 = "Hello World"
            test_file1 = os.path.join(tmp_user_path, 'test.txt')
            with open(test_file1, "wt") as f:
                f.write(msg1)
            zip_file = './tmpdata/data.zip'
            zip_data(tmp_user_path, zip_file=zip_file, fail_any_exception=True)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type,
                                               add_if_exists=False)
            assert db is not None
            docs = db.similarity_search("World")
            assert len(docs) == 1
            assert docs[0].page_content == msg1
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_url_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        url = 'https://h2o.ai/company/team/leadership-team/'
        db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, url=url, fail_any_exception=True,
                                           db_type=db_type)
        assert db is not None
        docs = db.similarity_search("list founding team of h2o.ai")
        assert len(docs) == 4
        assert 'Sri Ambati' in docs[0].page_content


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_html_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            html_content = """
<!DOCTYPE html>
<html>
<body>

<h1>Yugu is a wonderful place</h1>

<p>Animals love to run in the world of Yugu.  They play all day long in the alien sun.</p>

</body>
</html>
"""
            test_file1 = os.path.join(tmp_user_path, 'test.html')
            with open(test_file1, "wt") as f:
                f.write(html_content)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type,
                                               add_if_exists=False)
            assert db is not None
            docs = db.similarity_search("Yugu")
            assert len(docs) == 1
            assert 'Yugu' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_docx_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            url = 'https://calibre-ebook.com/downloads/demos/demo.docx'
            test_file1 = os.path.join(tmp_user_path, 'demo.docx')
            download_simple(url, dest=test_file1)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type)
            assert db is not None
            docs = db.similarity_search("What is calibre DOCX plugin do?")
            assert len(docs) == 4
            assert 'calibre' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_xls_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            test_file1 = os.path.join(tmp_user_path, 'example.xlsx')
            shutil.copy('data/example.xlsx', tmp_user_path)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type)
            assert db is not None
            docs = db.similarity_search("What is Profit?")
            assert len(docs) == 4
            assert '16604.000' in docs[0].page_content or 'Small Business' in docs[
                0].page_content or 'United States of America' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_md_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            test_file1 = 'README.md'
            if not os.path.isfile(test_file1):
                # see if ran from tests directory
                test_file1 = '../README.md'
                test_file1 = os.path.abspath(test_file1)
            shutil.copy(test_file1, tmp_user_path)
            test_file1 = os.path.join(tmp_user_path, os.path.basename(test_file1))
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type)
            assert db is not None
            docs = db.similarity_search("What is h2oGPT?")
            assert len(docs) == 4
            assert 'Query and summarize your documents' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_eml_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            url = 'https://raw.githubusercontent.com/FlexConfirmMail/Thunderbird/master/sample.eml'
            test_file1 = os.path.join(tmp_user_path, 'sample.eml')
            download_simple(url, dest=test_file1)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type,
                                               add_if_exists=False)
            assert db is not None
            docs = db.similarity_search("What is subject?")
            assert len(docs) == 1
            assert 'testtest' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_simple_eml_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            html_content = """
Date: Sun, 1 Apr 2012 14:25:25 -0600
From: [email protected]
Subject: Welcome
To: [email protected]

Dear Friend,

Welcome to file.fyicenter.com!

Sincerely,
FYIcenter.com Team"""
            test_file1 = os.path.join(tmp_user_path, 'test.eml')
            with open(test_file1, "wt") as f:
                f.write(html_content)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type,
                                               add_if_exists=False)
            assert db is not None
            docs = db.similarity_search("Subject")
            assert len(docs) == 1
            assert 'Welcome' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_odt_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            url = 'https://github.com/owncloud/example-files/raw/master/Documents/Example.odt'
            test_file1 = os.path.join(tmp_user_path, 'sample.odt')
            download_simple(url, dest=test_file1)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type)
            assert db is not None
            docs = db.similarity_search("What is ownCloud?")
            assert len(docs) == 4
            assert 'ownCloud' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_pptx_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            url = 'https://www.unm.edu/~unmvclib/powerpoint/pptexamples.ppt'
            test_file1 = os.path.join(tmp_user_path, 'sample.pptx')
            download_simple(url, dest=test_file1)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type,
                                               add_if_exists=False)
            assert db is not None
            docs = db.similarity_search("Suggestions")
            assert len(docs) == 4
            assert 'Presentation' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_simple_pptx_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            url = 'https://www.suu.edu/webservices/styleguide/example-files/example.pptx'
            test_file1 = os.path.join(tmp_user_path, 'sample.pptx')
            download_simple(url, dest=test_file1)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type,
                                               add_if_exists=False)
            assert db is not None
            docs = db.similarity_search("Example")
            assert len(docs) == 1
            assert 'Powerpoint' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_epub_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            url = 'https://contentserver.adobe.com/store/books/GeographyofBliss_oneChapter.epub'
            test_file1 = os.path.join(tmp_user_path, 'sample.epub')
            download_simple(url, dest=test_file1)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type,
                                               add_if_exists=False)
            assert db is not None
            docs = db.similarity_search("Grump")
            assert len(docs) == 4
            assert 'happy' in docs[0].page_content or 'happiness' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.skip(reason="Not supported, GPL3, and msg-extractor code fails too often")
@pytest.mark.xfail(strict=False,
                   reason="fails with AttributeError: 'Message' object has no attribute '_MSGFile__stringEncoding'. Did you mean: '_MSGFile__overrideEncoding'? even though can use online converter to .eml fine.")
@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_msg_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            url = 'http://file.fyicenter.com/b/sample.msg'
            test_file1 = os.path.join(tmp_user_path, 'sample.msg')
            download_simple(url, dest=test_file1)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type)
            assert db is not None
            docs = db.similarity_search("Grump")
            assert len(docs) == 4
            assert 'Happy' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_png_add(db_type):
    return run_png_add(captions_model=None, caption_gpu=False, db_type=db_type)


@pytest.mark.skipif(not have_gpus, reason="requires GPUs to run")
@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_png_add_gpu(db_type):
    return run_png_add(captions_model=None, caption_gpu=True, db_type=db_type)


@pytest.mark.skipif(not have_gpus, reason="requires GPUs to run")
@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_png_add_gpu_preload(db_type):
    return run_png_add(captions_model=None, caption_gpu=True, pre_load_caption_model=True, db_type=db_type)


@pytest.mark.skipif(not (have_gpus and mem_gpus[0] > 20 * 1024 ** 3), reason="requires GPUs and enough memory to run")
@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_png_add_gpu_blip2(db_type):
    return run_png_add(captions_model='Salesforce/blip2-flan-t5-xl', caption_gpu=True, db_type=db_type)


def run_png_add(captions_model=None, caption_gpu=False, pre_load_caption_model=False, db_type='chroma'):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            test_file1 = 'data/pexels-evg-kowalievska-1170986_small.jpg'
            if not os.path.isfile(test_file1):
                # see if ran from tests directory
                test_file1 = '../data/pexels-evg-kowalievska-1170986_small.jpg'
                assert os.path.isfile(test_file1)
            test_file1 = os.path.abspath(test_file1)
            shutil.copy(test_file1, tmp_user_path)
            test_file1 = os.path.join(tmp_user_path, os.path.basename(test_file1))
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, enable_ocr=False, caption_gpu=caption_gpu,
                                               pre_load_caption_model=pre_load_caption_model,
                                               captions_model=captions_model, db_type=db_type,
                                               add_if_exists=False)
            assert db is not None
            docs = db.similarity_search("cat")
            assert len(docs) == 1
            assert 'a cat sitting on a window' in docs[0].page_content
            assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1)


@pytest.mark.parametrize("db_type", db_types)
@wrap_test_forked
def test_simple_rtf_add(db_type):
    from src.make_db import make_db_main
    with tempfile.TemporaryDirectory() as tmp_persistent_directory:
        with tempfile.TemporaryDirectory() as tmp_user_path:
            rtf_content = """
{\rtf1\mac\deff2 {\fonttbl{\f0\fswiss Chicago;}{\f2\froman New York;}{\f3\fswiss Geneva;}{\f4\fmodern Monaco;}{\f11\fnil Cairo;}{\f13\fnil Zapf Dingbats;}{\f16\fnil Palatino;}{\f18\fnil Zapf Chancery;}{\f20\froman Times;}{\f21\fswiss Helvetica;}
{\f22\fmodern Courier;}{\f23\ftech Symbol;}{\f24\fnil Mobile;}{\f100\fnil FoxFont;}{\f107\fnil MathMeteor;}{\f164\fnil Futura;}{\f1024\fnil American Heritage;}{\f2001\fnil Arial;}{\f2005\fnil Courier New;}{\f2010\fnil Times New Roman;}
{\f2011\fnil Wingdings;}{\f2515\fnil MT Extra;}{\f3409\fnil FoxPrint;}{\f11132\fnil InsigniaLQmono;}{\f11133\fnil InsigniaLQprop;}{\f14974\fnil LB Helvetica Black;}{\f14976\fnil L Helvetica Light;}}{\colortbl\red0\green0\blue0;\red0\green0\blue255;
\red0\green255\blue255;\red0\green255\blue0;\red255\green0\blue255;\red255\green0\blue0;\red255\green255\blue0;\red255\green255\blue255;}{\stylesheet{\f4\fs18 \sbasedon222\snext0 Normal;}}{\info{\title samplepostscript.msw}{\author 
Computer Science Department}}\widowctrl\ftnbj \sectd \sbknone\linemod0\linex0\cols1\endnhere \pard\plain \qc \f4\fs18 {\plain \b\f21 Sample Rich Text Format Document\par 
}\pard {\plain \f20 \par 
}\pard \ri-80\sl-720\keep\keepn\absw570 {\caps\f20\fs92\dn6 T}{\plain \f20 \par 
}\pard \qj {\plain \f20 his is a sample rich text format (RTF), document. This document was created using Microsoft Word and then printing the document to a RTF file. It illustrates the very basic text formatting effects that can be achieved using RTF. 
\par 
\par 
}\pard \qj\li1440\ri1440\box\brdrs \shading1000 {\plain \f20 RTF }{\plain \b\f20 contains codes for producing advanced editing effects. Such as this indented, boxed, grayed background, entirely boldfaced paragraph.\par 
}\pard \qj {\plain \f20 \par 
Microsoft  Word developed RTF for document transportability and gives a user access to the complete set of the effects that can be achieved using RTF. \par 
}}
"""
            test_file1 = os.path.join(tmp_user_path, 'test.rtf')
            with open(test_file1, "wt") as f:
                f.write(rtf_content)
            db, collection_name = make_db_main(persist_directory=tmp_persistent_directory, user_path=tmp_user_path,
                                               fail_any_exception=True, db_type=db_type,
                                               add_if_exists=False)
            assert db is not None
            docs = db.similarity_search("How was this document created?")
            assert len(docs) == 4
            assert 'Microsoft' in docs[1].page_content
            assert os.path.normpath(docs[1].metadata['source']) == os.path.normpath(test_file1)


if __name__ == '__main__':
    pass