import os import requests import streamlit as st # Get the Hugging Face API Token from environment variables HF_API_TOKEN = os.getenv("HF_API_KEY") if not HF_API_TOKEN: raise ValueError("Hugging Face API Token is not set in the environment variables.") # Hugging Face API URLs and headers for models MISTRAL_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1" MINICHAT_API_URL = "https://api-inference.huggingface.co/models/GeneZC/MiniChat-2-3B" DIALOGPT_API_URL = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large" PHI3_API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct" GEMMA_API_URL = "https://api-inference.huggingface.co/models/google/gemma-1.1-7b-it" GEMMA_2B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-1.1-2b-it" META_LLAMA_70B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct" META_LLAMA_8B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct" GEMMA_27B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b" GEMMA_27B_IT_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b-it" HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"} def query_model(api_url, payload): response = requests.post(api_url, headers=HEADERS, json=payload) return response.json() def add_message_to_conversation(user_message, bot_message, model_name): st.session_state.conversation.append((user_message, bot_message, model_name)) # Streamlit app st.set_page_config(page_title="Multi-LLM Chatbot Interface", layout="wide") st.title("Multi-LLM Chatbot Interface") st.write("Multi LLM-Chatbot Interface") # Initialize session state for conversation and model history if "conversation" not in st.session_state: st.session_state.conversation = [] if "model_history" not in st.session_state: st.session_state.model_history = {model: [] for model in [ "Mistral-8x7B", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct", "Gemma-1.1-7B", "Gemma-1.1-2B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", "Gemma-2-27B", "Gemma-2-27B-IT" ]} # Dropdown for LLM selection llm_selection = st.selectbox("Select Language Model", [ "Mistral-8x7B", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct", "Gemma-1.1-7B", "Gemma-1.1-2B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", "Gemma-2-27B", "Gemma-2-27B-IT" ]) # User input for question question = st.text_input("Question", placeholder="Enter your question here...") # Handle user input and LLM response if st.button("Send") and question: try: with st.spinner("Waiting for the model to respond..."): chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n" if llm_selection == "Mistral-8x7B": response = query_model(MISTRAL_API_URL, {"inputs": chat_history}) answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" elif llm_selection == "MiniChat-2-3B": response = query_model(MINICHAT_API_URL, {"inputs": chat_history}) if "error" in response and "is currently loading" in response["error"]: answer = f"Model is loading, please wait {response['estimated_time']} seconds." else: answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" elif llm_selection == "DialoGPT (GPT-2-1.5B)": response = query_model(DIALOGPT_API_URL, {"inputs": chat_history}) answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" elif llm_selection == "Phi-3-mini-4k-instruct": response = query_model(PHI3_API_URL, {"inputs": chat_history}) answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" elif llm_selection == "Gemma-1.1-7B": response = query_model(GEMMA_API_URL, {"inputs": chat_history}) answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" elif llm_selection == "Gemma-1.1-2B": response = query_model(GEMMA_2B_API_URL, {"inputs": chat_history}) answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" elif llm_selection == "Meta-Llama-3-70B-Instruct": response = query_model(META_LLAMA_70B_API_URL, {"inputs": chat_history}) answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" elif llm_selection == "Meta-Llama-3-8B-Instruct": response = query_model(META_LLAMA_8B_API_URL, {"inputs": chat_history}) answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" elif llm_selection == "Gemma-2-27B": response = query_model(GEMMA_27B_API_URL, {"inputs": chat_history}) answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" elif llm_selection == "Gemma-2-27B-IT": response = query_model(GEMMA_27B_IT_API_URL, {"inputs": chat_history}) answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" add_message_to_conversation(question, answer, llm_selection) st.session_state.model_history[llm_selection].append(f"User: {question}\n{llm_selection}: {answer}\n") except ValueError as e: st.error(str(e)) # Custom CSS for chat bubbles st.markdown( """ """, unsafe_allow_html=True ) # Display the conversation st.write('