ariankhalfani commited on
Commit
aad259d
·
verified ·
1 Parent(s): 2394e8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -20
app.py CHANGED
@@ -1,6 +1,5 @@
1
  import os
2
  import requests
3
- import time
4
  import streamlit as st
5
 
6
  # Get the Hugging Face API Token from environment variables
@@ -26,23 +25,6 @@ def query_model(api_url, payload):
26
  response = requests.post(api_url, headers=HEADERS, json=payload)
27
  return response.json()
28
 
29
- def count_tokens(text):
30
- return len(text.split())
31
-
32
- MAX_TOKENS_PER_MINUTE = 1000
33
- token_count = 0
34
- start_time = time.time()
35
-
36
- def handle_token_limit(text):
37
- global token_count, start_time
38
- current_time = time.time()
39
- if current_time - start_time > 60:
40
- token_count = 0
41
- start_time = current_time
42
- token_count += count_tokens(text)
43
- if token_count > MAX_TOKENS_PER_MINUTE:
44
- raise ValueError("Token limit exceeded. Please wait before sending more messages.")
45
-
46
  def add_message_to_conversation(user_message, bot_message, model_name):
47
  st.session_state.conversation.append((user_message, bot_message, model_name))
48
 
@@ -74,7 +56,6 @@ question = st.text_input("Question", placeholder="Enter your question here...")
74
  # Handle user input and LLM response
75
  if st.button("Send") and question:
76
  try:
77
- handle_token_limit(question) # Check token limit before processing
78
  with st.spinner("Waiting for the model to respond..."):
79
  chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n"
80
  if llm_selection == "Mistral-8x7B":
@@ -111,7 +92,6 @@ if st.button("Send") and question:
111
  response = query_model(GEMMA_27B_IT_API_URL, {"inputs": chat_history})
112
  answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
113
 
114
- handle_token_limit(answer) # Check token limit for output
115
  add_message_to_conversation(question, answer, llm_selection)
116
  st.session_state.model_history[llm_selection].append(f"User: {question}\n{llm_selection}: {answer}\n")
117
  except ValueError as e:
 
1
  import os
2
  import requests
 
3
  import streamlit as st
4
 
5
  # Get the Hugging Face API Token from environment variables
 
25
  response = requests.post(api_url, headers=HEADERS, json=payload)
26
  return response.json()
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  def add_message_to_conversation(user_message, bot_message, model_name):
29
  st.session_state.conversation.append((user_message, bot_message, model_name))
30
 
 
56
  # Handle user input and LLM response
57
  if st.button("Send") and question:
58
  try:
 
59
  with st.spinner("Waiting for the model to respond..."):
60
  chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n"
61
  if llm_selection == "Mistral-8x7B":
 
92
  response = query_model(GEMMA_27B_IT_API_URL, {"inputs": chat_history})
93
  answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
94
 
 
95
  add_message_to_conversation(question, answer, llm_selection)
96
  st.session_state.model_history[llm_selection].append(f"User: {question}\n{llm_selection}: {answer}\n")
97
  except ValueError as e: