Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import os
|
2 |
import requests
|
3 |
-
import time
|
4 |
import streamlit as st
|
5 |
|
6 |
# Get the Hugging Face API Token from environment variables
|
@@ -26,23 +25,6 @@ def query_model(api_url, payload):
|
|
26 |
response = requests.post(api_url, headers=HEADERS, json=payload)
|
27 |
return response.json()
|
28 |
|
29 |
-
def count_tokens(text):
|
30 |
-
return len(text.split())
|
31 |
-
|
32 |
-
MAX_TOKENS_PER_MINUTE = 1000
|
33 |
-
token_count = 0
|
34 |
-
start_time = time.time()
|
35 |
-
|
36 |
-
def handle_token_limit(text):
|
37 |
-
global token_count, start_time
|
38 |
-
current_time = time.time()
|
39 |
-
if current_time - start_time > 60:
|
40 |
-
token_count = 0
|
41 |
-
start_time = current_time
|
42 |
-
token_count += count_tokens(text)
|
43 |
-
if token_count > MAX_TOKENS_PER_MINUTE:
|
44 |
-
raise ValueError("Token limit exceeded. Please wait before sending more messages.")
|
45 |
-
|
46 |
def add_message_to_conversation(user_message, bot_message, model_name):
|
47 |
st.session_state.conversation.append((user_message, bot_message, model_name))
|
48 |
|
@@ -74,7 +56,6 @@ question = st.text_input("Question", placeholder="Enter your question here...")
|
|
74 |
# Handle user input and LLM response
|
75 |
if st.button("Send") and question:
|
76 |
try:
|
77 |
-
handle_token_limit(question) # Check token limit before processing
|
78 |
with st.spinner("Waiting for the model to respond..."):
|
79 |
chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n"
|
80 |
if llm_selection == "Mistral-8x7B":
|
@@ -111,7 +92,6 @@ if st.button("Send") and question:
|
|
111 |
response = query_model(GEMMA_27B_IT_API_URL, {"inputs": chat_history})
|
112 |
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
|
113 |
|
114 |
-
handle_token_limit(answer) # Check token limit for output
|
115 |
add_message_to_conversation(question, answer, llm_selection)
|
116 |
st.session_state.model_history[llm_selection].append(f"User: {question}\n{llm_selection}: {answer}\n")
|
117 |
except ValueError as e:
|
|
|
1 |
import os
|
2 |
import requests
|
|
|
3 |
import streamlit as st
|
4 |
|
5 |
# Get the Hugging Face API Token from environment variables
|
|
|
25 |
response = requests.post(api_url, headers=HEADERS, json=payload)
|
26 |
return response.json()
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def add_message_to_conversation(user_message, bot_message, model_name):
|
29 |
st.session_state.conversation.append((user_message, bot_message, model_name))
|
30 |
|
|
|
56 |
# Handle user input and LLM response
|
57 |
if st.button("Send") and question:
|
58 |
try:
|
|
|
59 |
with st.spinner("Waiting for the model to respond..."):
|
60 |
chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n"
|
61 |
if llm_selection == "Mistral-8x7B":
|
|
|
92 |
response = query_model(GEMMA_27B_IT_API_URL, {"inputs": chat_history})
|
93 |
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
|
94 |
|
|
|
95 |
add_message_to_conversation(question, answer, llm_selection)
|
96 |
st.session_state.model_history[llm_selection].append(f"User: {question}\n{llm_selection}: {answer}\n")
|
97 |
except ValueError as e:
|