File size: 46,237 Bytes
ae81e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
//
// Copyright (c) 2020 Idiap Research Institute, http://www.idiap.ch/
// Written by Angelos Katharopoulos <[email protected]>,
// Apoorv Vyas <[email protected]>
//

//
// For modifications made inside namespace nvidia (authored by jdemouth):
//
// Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved.
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// 
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//

#include <torch/extension.h>
#include <assert.h>
#include <stdio.h>

#define ENABLE_NVIDIA_OPTIMIZATIONS

#ifdef ENABLE_NVIDIA_OPTIMIZATIONS
namespace nvidia {

////////////////////////////////////////////////////////////////////////////////////////////////////

constexpr int THREADS_PER_WARP = 32;

////////////////////////////////////////////////////////////////////////////////////////////////////

constexpr int LOW_OCCUPANCY_THRESHOLD = 40; // TODO: Make it HW specific (like 1/2 SMs).

////////////////////////////////////////////////////////////////////////////////////////////////////

static inline __device__ __host__ int div_up(int m, int n) {
  return (m + n-1) / n;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

static inline __device__ __host__ int round_up(int m, int n) {
  return div_up(m, n) * n;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template< typename T >
struct Lmha_params {

  // The output buffer. Dimensions [B, H, L, M].
  T *out;

  // The input Qs. Dimensions [B, H, L, E].
  const T *q;
  // The input Ks. Dimensions [B, H, L, E].
  const T *k;
  // The input Vs. Dimensions [B, H, L, M].
  const T *v;

  // The different dimensions.
  int B, L, H, E, M;

  // The strides for the different tensors.
  int q_stride_B, q_stride_H, q_stride_L;
  int k_stride_B, k_stride_H, k_stride_L;
  int v_stride_B, v_stride_H, v_stride_L;
  int o_stride_B, o_stride_H, o_stride_L;
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template< int E, bool GO_BACKWARD, int WARPS, int COLS_PER_THREAD = 4 >
__global__ __launch_bounds__(WARPS * THREADS_PER_WARP)
void lmha_low_occupancy_kernel(Lmha_params<float> params) {

  // The number of threads per block.
  constexpr int THREADS_PER_BLOCK = WARPS * THREADS_PER_WARP;
  // The number of rows per thread.
  constexpr int ROWS_PER_THREAD = E / THREADS_PER_WARP;
  // The number of steps per iteration.
  constexpr int COLS_PER_ITER = WARPS * COLS_PER_THREAD;

  // Make sure E is a multiple of the warp size.
  static_assert(E % THREADS_PER_WARP == 0, "");

  // Shared memory to store V/O.
  __shared__ float smem_v[COLS_PER_ITER], smem_o[COLS_PER_ITER];
  // Shared memory buffer to performance the reductions.
  __shared__ float smem_reds[E * WARPS]; 

  // The sequence processed by that block.
  const int bi = blockIdx.z;
  // The head processed by that block.
  const int hi = blockIdx.y;
  // The hidden cell in the V/output buffers.
  const int vi = blockIdx.x;

  // The linear index of the thread.
  const int tidx = threadIdx.x;

  // Decompose the block in warp/lane.
  const int warp = tidx / THREADS_PER_WARP;
  const int lane = tidx % THREADS_PER_WARP;

  // The base offset loaded by the thread in Q and K.
  int offset_q = bi*params.q_stride_B + hi*params.q_stride_H + lane;
  int offset_k = bi*params.k_stride_B + hi*params.k_stride_H + lane;

  // If we walk backward, account for the extra offset.
  if( GO_BACKWARD ) {
    offset_q += (params.L-1)*params.q_stride_L;
    offset_k += (params.L-1)*params.k_stride_L;
  }

  // Position the warp at the beginning of the proper timestep.
  if( GO_BACKWARD ) {
    offset_q -= warp*COLS_PER_THREAD*params.q_stride_L;
    offset_k -= warp*COLS_PER_THREAD*params.k_stride_L;
  } else {
    offset_q += warp*COLS_PER_THREAD*params.q_stride_L;
    offset_k += warp*COLS_PER_THREAD*params.k_stride_L;
  }

  // Determine the base pointers for Q and K.
  const float *ptr_q = &params.q[offset_q];
  const float *ptr_k = &params.k[offset_k];

  // Is a given row valid?
  int valid_qk[ROWS_PER_THREAD];
  #pragma unroll
  for( int ii = 0; ii < ROWS_PER_THREAD; ++ii ) {
    valid_qk[ii] = lane + ii*THREADS_PER_WARP < params.E;
  }

  // The offset to the position loaded by the thread in V.
  int offset_v = bi*params.v_stride_B + hi*params.v_stride_H + vi;
  int offset_o = bi*params.o_stride_B + hi*params.o_stride_H + vi;

  // If we walk backward, account for the extra offset.
  if( GO_BACKWARD ) {
    offset_v += (params.L-1)*params.v_stride_L;
    offset_o += (params.L-1)*params.o_stride_L;
  }

  // We load/store a strided matrix of COLS_PER_ITER x OUTPUTS_PER_BLOCK.
  if( GO_BACKWARD ) {
    offset_v -= tidx*params.v_stride_L;
    offset_o -= tidx*params.o_stride_L;
  } else {
    offset_v += tidx*params.v_stride_L;
    offset_o += tidx*params.o_stride_L;
  }

  // Determine the base pointer for V.
  const float *ptr_v = &params.v[offset_v];
  // The output pointer. 
  float *ptr_o = &params.out[offset_o];

  // The running KVs.
  float running_kv[ROWS_PER_THREAD];
  #pragma unroll
  for( int ri = 0; ri < ROWS_PER_THREAD; ++ri ) {
    running_kv[ri] = 0.f;
  }

  // Iterate over the timesteps. TODO: Use params.loop_count!!!
  for( int iter = 0; iter < params.L; iter += COLS_PER_ITER ) {

    // Each thread loads a matrix of elements.
    float q[ROWS_PER_THREAD][COLS_PER_THREAD], k[ROWS_PER_THREAD][COLS_PER_THREAD];

    // Trigger the memory loads for Q and K.
    #pragma unroll
    for( int ci = 0; ci < COLS_PER_THREAD; ++ci ) {
      #pragma unroll
      for( int ri = 0; ri < ROWS_PER_THREAD; ++ri ) {

        // For Q/K, each warp loads from various timesteps. 
        int ti = iter + warp*COLS_PER_THREAD;
        if( GO_BACKWARD ) {
          ti = params.L - 1 - ti;
        }

        // Is it a valid access?
        int valid;
        if( GO_BACKWARD ) {
          valid = valid_qk[ri] && ti - ci >= 0;
        } else {
          valid = valid_qk[ri] && ti + ci < params.L;
        }

        // The extra offset to add.
        if( GO_BACKWARD ) {
          offset_q = ri*THREADS_PER_WARP - ci*params.q_stride_L;
          offset_k = ri*THREADS_PER_WARP - ci*params.k_stride_L;
        } else {
          offset_q = ri*THREADS_PER_WARP + ci*params.q_stride_L;
          offset_k = ri*THREADS_PER_WARP + ci*params.k_stride_L;
        }

        // Load Q/K if they are valid.
        q[ri][ci] = valid ? ptr_q[offset_q] : 0.f;
        k[ri][ci] = valid ? ptr_k[offset_k] : 0.f;
      }
    }

    // For the V tensor, we assign contiguous thread to different loads. So, ti is different.
    int ti = iter + tidx;
    if( GO_BACKWARD ) {
      ti = params.L - 1 - ti;
    }

    // Is it a valid access?
    int valid_vo = tidx < COLS_PER_ITER;
    if( GO_BACKWARD ) {
      valid_vo &= ti >= 0;
    } else {
      valid_vo &= ti < params.L;
    }

    // Trigger the loads for V. 
    float ldg_v = valid_vo ? *ptr_v : 0.f;

    // Move the load pointers.
    if( GO_BACKWARD ) {
      ptr_q -= COLS_PER_ITER*params.q_stride_L;
      ptr_k -= COLS_PER_ITER*params.k_stride_L;
      ptr_v -= COLS_PER_ITER*params.v_stride_L;
    } else {
      ptr_q += COLS_PER_ITER*params.q_stride_L;
      ptr_k += COLS_PER_ITER*params.k_stride_L;
      ptr_v += COLS_PER_ITER*params.v_stride_L;
    }

    // Store to shared memory.
    if( tidx < COLS_PER_ITER ) {
      smem_v[tidx] = ldg_v;
    }

    // Make sure V is in shared memory.
    __syncthreads();

    // Read V from shared memory.
    float v[COLS_PER_THREAD];
    #pragma unroll
    for( int ci = 0; ci < COLS_PER_THREAD; ++ci ) {
      v[ci] = smem_v[warp*COLS_PER_THREAD + ci];
    }

    // Each thread computes local K*V products.
    float kv[ROWS_PER_THREAD][COLS_PER_THREAD];
    #pragma unroll
    for( int ri = 0; ri < ROWS_PER_THREAD; ++ri ) {
      #pragma unroll
      for( int ci = 0; ci < COLS_PER_THREAD; ++ci ) {
        kv[ri][ci] = 0.f;
      }
    }

    // Update the K*V^T product.
    #pragma unroll
    for( int ci = 0; ci < COLS_PER_THREAD; ++ci ) {
      #pragma unroll
      for( int ri = 0; ri < ROWS_PER_THREAD; ++ri ) {
        kv[ri][ci] += k[ri][ci] * v[ci];
      }
    }

    // We must perform the prefix sums within the thread-block. Start with the thread.
    #pragma unroll
    for( int ri = 0; ri < ROWS_PER_THREAD; ++ri ) {
      #pragma unroll
      for( int ci = 1; ci < COLS_PER_THREAD; ++ci ) {
        kv[ri][ci] += kv[ri][ci-1];
      }
    }

    // Store the partial sums to shared memory. Unless we have no inter-warp reduction to perform.
    #pragma unroll
    for( int ri = 0; ri < ROWS_PER_THREAD; ++ri ) {
      smem_reds[warp*E + ri*THREADS_PER_WARP + lane] = kv[ri][COLS_PER_THREAD-1];
    }

    // Make sure the data is in shared memory.
    __syncthreads();

    // Each thread deals with one or more column(s) of the matrix.
    constexpr int SUMS_PER_THREAD = (E + THREADS_PER_BLOCK-1) / THREADS_PER_BLOCK;
    #pragma unroll
    for( int ii = 0, idx = tidx; ii < SUMS_PER_THREAD; ++ii, idx += THREADS_PER_BLOCK ) {
      if( idx < E ) {
        float sum = smem_reds[idx];
        #pragma unroll
        for( int jj = 1; jj < WARPS; ++jj ) {
          smem_reds[idx + jj*E] = sum += smem_reds[idx + jj*E];
        }
      }
    }

    // Make sure the reductions are stored in shared memory.
    __syncthreads();

    // Each thread updates his partial products.
    #pragma unroll
    for( int ri = 0; ri < ROWS_PER_THREAD; ++ri ) {
      float sum = running_kv[ri];
      if( warp > 0 ) {
        sum += smem_reds[(warp-1)*E + lane + ri*THREADS_PER_WARP];
      }
      #pragma unroll
      for( int ci = 0; ci < COLS_PER_THREAD; ++ci ) {
        kv[ri][ci] += sum;
      }
    }

    // Compute the partial output values for that thread.
    float sum[COLS_PER_THREAD];
    #pragma unroll
    for( int ci = 0; ci < COLS_PER_THREAD; ++ci ) {
      sum[ci] = q[0][ci] * kv[0][ci];
      #pragma unroll
      for( int ri = 1; ri < ROWS_PER_THREAD; ++ri ) {
        sum[ci] += q[ri][ci] * kv[ri][ci];
      }
    }

    // Run the parallel reductions inside the warp.
    #pragma unroll
    for( int mask = THREADS_PER_WARP / 2; mask >= 1; mask /= 2 ) {
      #pragma unroll
      for( int ci = 0; ci < COLS_PER_THREAD; ++ci ) {
        sum[ci] += __shfl_xor_sync(uint32_t(-1), sum[ci], mask);
      }
    }

    // Store the final output to shared memory.
    if( lane == 0 ) {
      #pragma unroll
      for( int ci = 0; ci < COLS_PER_THREAD; ++ci ) {
        smem_o[warp*COLS_PER_THREAD + ci] = sum[ci];
      }
    }

    // Make sure the data is in shared memory.
    __syncthreads();

    // Store the output.
    if( valid_vo ) {
      *ptr_o = smem_o[tidx];
    }

    // Each thread updates his running kv.
    #pragma unroll
    for( int ri = 0; ri < ROWS_PER_THREAD; ++ri ) {
      running_kv[ri] += smem_reds[(WARPS-1)*E + lane + ri*THREADS_PER_WARP];
    }

    // Move to next location.
    if( GO_BACKWARD ) {
      ptr_o -= COLS_PER_ITER*params.o_stride_L;
    } else {
      ptr_o += COLS_PER_ITER*params.o_stride_L;
    }
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template< int E, bool GO_BACKWARD, int WARPS >
int lmha_low_occupancy_(const Lmha_params<float> &params) {

  // Make sure we are not going to launch an invalid grid.
  if( params.H > 65535 || params.B > 65535 ) {
    return 1;
  }

  // Prepare the grid and trigger the CUDA kernel.
  dim3 grid;
  grid.x = params.M;
  grid.y = params.H;
  grid.z = params.B;
  lmha_low_occupancy_kernel<E, GO_BACKWARD, WARPS><<<grid, WARPS*THREADS_PER_WARP>>>(params);
  return 0;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template< int E, bool GO_BACKWARD >
int lmha_low_occupancy_(const Lmha_params<float> &params, int blocks) {
         if( params.M * blocks >= 8*LOW_OCCUPANCY_THRESHOLD ) {
    return lmha_low_occupancy_<E, GO_BACKWARD,  4>(params);
  } else if( params.M * blocks >= 4*LOW_OCCUPANCY_THRESHOLD ) {
    return lmha_low_occupancy_<E, GO_BACKWARD,  8>(params);
  } else {
    return lmha_low_occupancy_<E, GO_BACKWARD, 16>(params);
  }
  return 1;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template< int E, typename Params >
static inline __device__ __host__ int smem_buffer_elts_(const Params &params) {
  int M = round_up(params.M, 4);
  return 2*E + 2*M;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template< int E, int THREADS_PER_HEAD, bool GO_BACKWARD >
__global__ 
void lmha_kernel(Lmha_params<float> params) {

  // Make sure E is a multiple of 4.
  static_assert(E % 4 == 0, "");

  // The amount of shared memory per buffer (2 buffers for double-buffering).
  const int smem_buffer_elts = smem_buffer_elts_<E>(params);
  // The M dimension for shared memory.
  const int M = round_up(params.M, 4);

  // Shared memory to store Q, K and V. Size is 2*smem_buffer_elts.
  extern __shared__ float smem_[];

  // The various shared memory buffers.
  float *smem_q = &smem_[0*E];
  float *smem_k = &smem_[1*E];
  float *smem_v = &smem_[2*E];
  float *smem_o = &smem_[2*E + M];

  // The index of the shared memory buffer (for double-buffering).
  int smem_curr = 0;

  // The sequence processed by that block.
  const int bi = blockIdx.y;
  // The head processed by that block.
  const int hi = blockIdx.x;

  // The linear index of the thread.
  const int tidx = threadIdx.x;

  // The offset to the position loaded by the thread in Q.
  int offset_q = bi*params.q_stride_B + hi*params.q_stride_H + tidx;
  // The offset to the position loaded by the thread in K.
  int offset_k = bi*params.k_stride_B + hi*params.k_stride_H + tidx;

  // If we walk backward, account for the extra offset.
  if( GO_BACKWARD ) {
    offset_q += (params.L-1)*params.q_stride_L;
    offset_k += (params.L-1)*params.k_stride_L;
  }

  // Determine the base pointers for Q and K.
  const float *ptr_q = &params.q[offset_q];
  const float *ptr_k = &params.k[offset_k];

  // The offset to the position loaded by the thread in V and O.
  int offset_v = bi*params.v_stride_B + hi*params.v_stride_H + tidx;
  int offset_o = bi*params.o_stride_B + hi*params.o_stride_H + tidx;

  // If we walk backward, account for the extra offset.
  if( GO_BACKWARD ) {
    offset_v += (params.L-1)*params.v_stride_L;
    offset_o += (params.L-1)*params.o_stride_L;
  }

  // Determine the base pointers for V.
  const float *ptr_v = &params.v[offset_v];

  // Is it an active Q/K thread?
  const int active_qk = tidx < params.E;

  // Trigger the memory loads for Q and K.
  float ldg_q = 0.f, ldg_k = 0.f;
  if( active_qk ) {
    ldg_q = *ptr_q;
    ldg_k = *ptr_k;
  }

  // Is it an active V thread?
  const int active_v = tidx < params.M;

  // Trigger the memory loads for V. 
  float ldg_v = 0.f;
  if( active_v ) {
    ldg_v = *ptr_v;
  }

  // Move the load pointers.
  if( GO_BACKWARD ) {
    ptr_q -= params.q_stride_L;
    ptr_k -= params.k_stride_L;
    ptr_v -= params.v_stride_L;
  } else {
    ptr_q += params.q_stride_L;
    ptr_k += params.k_stride_L;
    ptr_v += params.v_stride_L;
  }

  // The number of FLOAT4s per head.
  constexpr int FLOAT4s_PER_HEAD = E / 4;
  // The number of FLOAT4s per thread.
  constexpr int FLOAT4s_PER_THREAD = FLOAT4s_PER_HEAD / THREADS_PER_HEAD;

  // The storage for the K*V^T values.
  float4 kv[FLOAT4s_PER_THREAD]; 
  #pragma unroll
  for( int ii = 0; ii < FLOAT4s_PER_THREAD; ++ii ) {
    kv[ii] = make_float4(0.f, 0.f, 0.f, 0.f);
  }

  // The output pointer.
  float *out_ptr = &params.out[offset_o];

  // Store to shared memory Q and K.
  if( tidx < E ) { 
    smem_q[smem_curr*smem_buffer_elts + tidx] = ldg_q; 
    smem_k[smem_curr*smem_buffer_elts + tidx] = ldg_k; 
  }

  // Store to shared memory V. All threads store valid values.
  if( tidx < M ) {
    smem_v[smem_curr*smem_buffer_elts + tidx] = ldg_v;
  }

  // The position of the thread in the V dimension.
  int vo = tidx / THREADS_PER_HEAD;
  int vi = tidx % THREADS_PER_HEAD;

  // Iterate over the timesteps.
  for( int ti = 0; ti < params.L; ++ti ) {

    // Is it the last iteration?
    int is_last = ti == params.L - 1;

    // Trigger the next loads for Q and K.
    if( !is_last && active_qk ) {
      ldg_q = *ptr_q;
      ldg_k = *ptr_k;
    }

    // Trigger the next loads for V.
    if( !is_last && active_v ) {
      ldg_v = *ptr_v;
    }

    // Move the load pointers.
    if( GO_BACKWARD ) {
      ptr_q -= params.q_stride_L;
      ptr_k -= params.k_stride_L;
      ptr_v -= params.v_stride_L;
    } else {
      ptr_q += params.q_stride_L;
      ptr_k += params.k_stride_L;
      ptr_v += params.v_stride_L;
    }

    // Make sure the data is in shared memory.
    __syncthreads();

    // Each thread loads 4 values from K.
    float4 k[FLOAT4s_PER_THREAD];
    #pragma unroll
    for( int ii = 0; ii < FLOAT4s_PER_THREAD; ++ii ) {
      int ki = tidx % THREADS_PER_HEAD * 4 + ii * THREADS_PER_HEAD * 4;
      k[ii] = *reinterpret_cast<const float4*>(&smem_k[smem_curr*smem_buffer_elts + ki]);
    }

    // Each thread loads a single V value.
    float v = 0.f;
    if( vo < params.M ) {
      v = *reinterpret_cast<const float *>(&smem_v[smem_curr*smem_buffer_elts + vo]);
    }

    // Update the K*V^T product.
    #pragma unroll
    for( int ii = 0; ii < FLOAT4s_PER_THREAD; ++ii ) {
      kv[ii].x += k[ii].x * v;
      kv[ii].y += k[ii].y * v;
      kv[ii].z += k[ii].z * v;
      kv[ii].w += k[ii].w * v;
    }

    // Load the Q values from shared memory.
    float4 q[FLOAT4s_PER_THREAD]; 
    #pragma unroll
    for( int ii = 0; ii < FLOAT4s_PER_THREAD; ++ii ) {
      int qi = tidx % THREADS_PER_HEAD * 4 + ii * THREADS_PER_HEAD * 4;
      q[ii] = *reinterpret_cast<const float4*>(&smem_q[smem_curr*smem_buffer_elts + qi]);
    }

    // Compute the partial output value for that thread.
    float sum = 0.f;
    #pragma unroll
    for( int ii = 0; ii < FLOAT4s_PER_THREAD; ++ii ) {
      sum += q[ii].x * kv[ii].x;
      sum += q[ii].y * kv[ii].y;
      sum += q[ii].z * kv[ii].z;
      sum += q[ii].w * kv[ii].w;
    }

    // Finalize the computation of the sum (if we have more than 1 thread per head).
    if( THREADS_PER_HEAD > 1 ) {

      // Finalize the sum for each head.
      #pragma unroll
      for( int mask = THREADS_PER_HEAD / 2; mask >= 1; mask /= 2 ) {
        sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
      }

      // Store to shared memory.
      if( vo < M && vi == 0 ) {
        smem_o[smem_curr*smem_buffer_elts + vo] = sum;
      }

      // Make sure the data is in shared memory.
      __syncthreads();

      // Active threads read the data to store.
      if( active_v ) {
        sum = smem_o[smem_curr*smem_buffer_elts + tidx];
      }

    } // THREADS_PER_HEAD > 1.

    // Store the output. All the threads are active.
    if( active_v ) {
      *out_ptr = sum;
    }

    // Move to next location.
    if( GO_BACKWARD ) {
      out_ptr -= params.o_stride_L;
    } else {
      out_ptr += params.o_stride_L;
    }

    // Move the shared memory buffer.
    smem_curr = (smem_curr + 1) % 2;

    // Store to shared memory for Q and K.
    if( !is_last && tidx < E ) {
      smem_q[smem_curr*smem_buffer_elts + tidx] = ldg_q;
      smem_k[smem_curr*smem_buffer_elts + tidx] = ldg_k;
    }

    // Store to shared memory for V.
    if( !is_last && tidx < M ) {
      smem_v[smem_curr*smem_buffer_elts + tidx] = ldg_v;
    }
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template< int E, int THREADS_PER_HEAD, bool GO_BACKWARD >
int lmha_(const Lmha_params<float> &params) {
  // The M dimension rounded up to 4.
  int M = round_up(params.M, 4);

  // The number of threads in the block.
  int block = round_up(max(E, M*THREADS_PER_HEAD), 32);
  if( block > 512 || params.B > 65535 ) {
    return 1;
  }

  // Prepare the kernel.
  dim3 grid(params.H, params.B);
  size_t smem = smem_buffer_elts_<E>(params)*2*sizeof(float);
  lmha_kernel<E, THREADS_PER_HEAD, GO_BACKWARD><<<grid, block, smem>>>(params);
  return 0;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template< bool GO_BACKWARD >
int lmha(const Lmha_params<float> &params) {
  int blocks = params.B * params.H;
  int res = 1;
  if( blocks < LOW_OCCUPANCY_THRESHOLD ) { 
           if( params.E <=  32 ) {
      res = lmha_low_occupancy_< 32, GO_BACKWARD>(params, blocks);
    } else if( params.E <=  64 ) {
      res = lmha_low_occupancy_< 64, GO_BACKWARD>(params, blocks);
    } else if( params.E <= 128 ) {
      res = lmha_low_occupancy_<128, GO_BACKWARD>(params, blocks);
    } else if( params.E <= 256 ) {
      res = lmha_low_occupancy_<256, GO_BACKWARD>(params, blocks);
    }
  } else {
           if( params.E <=  32 ) {
      res = lmha_< 32, 1, GO_BACKWARD>(params);
    } else if( params.E <=  48 ) {
      res = lmha_< 48, 1, GO_BACKWARD>(params);
    } else if( params.E <=  64 ) {
      res = lmha_< 64, 1, GO_BACKWARD>(params);
    } else if( params.E <= 128 ) {
      res = lmha_<128, 2, GO_BACKWARD>(params);
    } else if( params.E <= 256 ) {
      res = lmha_<256, 4, GO_BACKWARD>(params);
    }
  }
  return res;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template< typename T >
inline void set_params(Lmha_params<T> &params,
                       const torch::Tensor q,
                       const torch::Tensor k,
                       const torch::Tensor v,
                       torch::Tensor       o) {

  // Define the pointers.
  params.out = o.data_ptr<T>();
  params.q   = q.data_ptr<T>();
  params.k   = k.data_ptr<T>();
  params.v   = v.data_ptr<T>();

  // Define the strides.
  params.q_stride_B = (int) q.stride(0);
  params.q_stride_H = (int) q.stride(1);
  params.q_stride_L = (int) q.stride(2);
  params.k_stride_B = (int) k.stride(0);
  params.k_stride_H = (int) k.stride(1);
  params.k_stride_L = (int) k.stride(2);
  params.v_stride_B = (int) v.stride(0);
  params.v_stride_H = (int) v.stride(1);
  params.v_stride_L = (int) v.stride(2);
  params.o_stride_B = (int) o.stride(0);
  params.o_stride_H = (int) o.stride(1);
  params.o_stride_L = (int) o.stride(2);

  // Extract the dimensions.
  int N = q.size(0);
  int H = q.size(1);
  int L = q.size(2);
  int E = q.size(3);
  int M = v.size(3);

  params.B = N;
  params.L = L;
  params.H  = H;
  params.E = E;
  params.M = M;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

int lmha_fwd(const torch::Tensor queries,
             const torch::Tensor keys,
             const torch::Tensor values,
             torch::Tensor product) {

  // Make sure that we are using the correct GPU device
  torch::DeviceGuard _guard(queries.device());

  // Make sure the inner-most dimension of the tensors is packed.
  assert(queries.stride(3) == 1);
  assert(keys   .stride(3) == 1);
  assert(values .stride(3) == 1);
  assert(product.stride(3) == 1);

  // Extract the dimensions.
  int N = queries.size(0);
  int H = queries.size(1);
  int L = queries.size(2);
  int E = queries.size(3);
  int M = values.size (3);

  // The structure of params.
  Lmha_params<float> params;
  set_params(params, queries, keys, values, product);

  // Launch the kernel.
  return lmha<false>(params);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template< typename T >
struct Lmha_bwd_params {

  // The output buffer for K. Dimensions [B, H, L, D].
  T *out_k;
  // The output buffer for V. Dimensions [B, H, L, D].
  T *out_v;

  // The input Qs. Dimensions [B, H, L, D].
  const T *q;
  // The input Ks. Dimensions [B, H, L, D].
  const T *k;
  // The input Vs. Dimensions [B, H, L, D].
  const T *v;
  // The input Gs. Dimensions [B, H, L, D].
  const T *g;

  // The dimensions.
  int B, L, H, M, E;

  // The strides for the input tensors.
  int q_stride_B, q_stride_L, q_stride_H;
  int k_stride_B, k_stride_L, k_stride_H;
  int v_stride_B, v_stride_L, v_stride_H;
  int g_stride_B, g_stride_L, g_stride_H;

  // The strides for the outputs.
  int out_k_stride_B, out_k_stride_L, out_k_stride_H;
  int out_v_stride_B, out_v_stride_L, out_v_stride_H;
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template< int D, int THREADS_PER_HEAD >
__global__ __launch_bounds__(D*THREADS_PER_HEAD*2)
void lmha_bwd_kernel(Lmha_bwd_params<float> params) {

  // Make sure D is a multiple of 4.
  static_assert(D % 4 == 0, "");

  // The shared memory buffers.
  __shared__ struct Smem { float qg[2*D], kv[2*D], out_kv[2*D]; } smem_[2];

  // The index of the shared memory buffer (for double-buffering).
  int smem_curr = 0;

  // The sequence processed by that block.
  const int bi = blockIdx.y;
  // The head processed by that block.
  const int hi = blockIdx.x;

  // The linear index of the thread.
  const int tidx = threadIdx.x;

  // Split the threads into two slices.
  int so = tidx / (D*THREADS_PER_HEAD);
  int si = tidx % (D*THREADS_PER_HEAD);

  // The strides for B/L/H for the Q/G tensors.
  int qg_stride_B, qg_stride_L, qg_stride_H;
  if( so == 0 ) {
    qg_stride_B = params.q_stride_B;
    qg_stride_L = params.q_stride_L;
    qg_stride_H = params.q_stride_H;
  } else {
    qg_stride_B = params.g_stride_B;
    qg_stride_L = params.g_stride_L;
    qg_stride_H = params.g_stride_H;
  }

  // The strides for B/L/H for the K/V tensors.
  int kv_stride_B, kv_stride_L, kv_stride_H;
  if( so == 0 ) {
    kv_stride_B = params.k_stride_B;
    kv_stride_L = params.k_stride_L;
    kv_stride_H = params.k_stride_H;
  } else {
    kv_stride_B = params.v_stride_B;
    kv_stride_L = params.v_stride_L;
    kv_stride_H = params.v_stride_H;
  }

  // The hidden size.
  int hidden_size_per_head = 0;
  if( so == 0 ) {
    hidden_size_per_head = params.E;
  } else {
    hidden_size_per_head = params.M;
  }

  // Where to start reading from.
  int offset_qg = bi*qg_stride_B + hi*qg_stride_H + si;
  int offset_kv = bi*kv_stride_B + hi*kv_stride_H + si;

  // We walk backward, account for the extra offset.
  offset_qg += (params.L-1)*qg_stride_L;
  offset_kv += (params.L-1)*kv_stride_L;

  // Determine the base pointers for Q, K, V and G.
  const float *ptr_qg = &(so == 0 ? params.q : params.g)[offset_qg];
  const float *ptr_kv = &(so == 0 ? params.k : params.v)[offset_kv]; 

  // Is it an active thread?
  const int active = si < hidden_size_per_head;

  // Trigger the memory loads for Q, K, V and G.
  float ldg_qg = 0.f, ldg_kv = 0.f;
  if( active ) {
    ldg_qg = *ptr_qg;
    ldg_kv = *ptr_kv;
  }

  // Move the load pointers (backward).
  ptr_qg -= qg_stride_L;
  ptr_kv -= kv_stride_L;

  // The number of FLOAT4s per head.
  constexpr int FLOAT4s_PER_HEAD = D / 4;
  // The number of FLOAT4s per thread.
  constexpr int FLOAT4s_PER_THREAD = FLOAT4s_PER_HEAD / THREADS_PER_HEAD;

  // The storage for the G*Q^T or Q^T*G values.
  float4 gq[FLOAT4s_PER_THREAD]; 
  #pragma unroll
  for( int ii = 0; ii < FLOAT4s_PER_THREAD; ++ii ) {
    gq[ii] = make_float4(0.f, 0.f, 0.f, 0.f);
  }

  // The strides for B/L/H for the K/V tensors.
  int out_kv_stride_B, out_kv_stride_L, out_kv_stride_H;
  if( so == 0 ) {
    out_kv_stride_B = params.out_k_stride_B;
    out_kv_stride_L = params.out_k_stride_L;
    out_kv_stride_H = params.out_k_stride_H;
  } else {
    out_kv_stride_B = params.out_v_stride_B;
    out_kv_stride_L = params.out_v_stride_L;
    out_kv_stride_H = params.out_v_stride_H;
  }

  // Where to start reading from.
  int offset_out_kv = bi*out_kv_stride_B + hi*out_kv_stride_H + si;

  // We walk backward, account for the extra offset.
  offset_out_kv += (params.L-1)*out_kv_stride_L;

  // The output pointer.
  float *ptr_out_kv = &(so == 0 ? params.out_k : params.out_v)[offset_out_kv];

  // Store to shared memory.
  if( si < D ) { 
    smem_[smem_curr].qg[so*D + si] = ldg_qg; 
    smem_[smem_curr].kv[so*D + si] = ldg_kv; 
  }

  // The position of the thread in the output dimension.
  int oo = si / THREADS_PER_HEAD % D;
  int oi = si % THREADS_PER_HEAD * 4;

  // Iterate over the timesteps.
  for( int ti = 0; ti < params.L; ++ti ) {

    // Is it the last iteration?
    int is_last = ti == params.L - 1;

    // Trigger the next loads.
    if( !is_last && active ) {
      ldg_qg = *ptr_qg;
      ldg_kv = *ptr_kv;
    }

    // Move the load pointers.
    ptr_qg -= qg_stride_L;
    ptr_kv -= kv_stride_L;

    // Make sure the data is in shared memory.
    __syncthreads();

    // Each thread loads 4 values from G or Q.
    float4 g[FLOAT4s_PER_THREAD];
    #pragma unroll
    for( int ii = 0; ii < FLOAT4s_PER_THREAD; ++ii ) {
      float *smem_ptr = &smem_[smem_curr].qg[(so^1)*D + oi];
      g[ii] = *reinterpret_cast<const float4*>(&smem_ptr[ii*THREADS_PER_HEAD*4]);
    }

    // Each thread loads a single from Q or G value.
    float q = smem_[smem_curr].qg[so*D + oo];

    // Update the G*Q^T or Q*G^T product.
    #pragma unroll
    for( int ii = 0; ii < FLOAT4s_PER_THREAD; ++ii ) {
      gq[ii].x += g[ii].x * q;
      gq[ii].y += g[ii].y * q;
      gq[ii].z += g[ii].z * q;
      gq[ii].w += g[ii].w * q;
    }

    // Load the V or K values from shared memory.
    float4 v[FLOAT4s_PER_THREAD]; 
    #pragma unroll
    for( int ii = 0; ii < FLOAT4s_PER_THREAD; ++ii ) {
      float *smem_ptr = &smem_[smem_curr].kv[(so^1)*D + oi];
      v[ii] = *reinterpret_cast<const float4*>(&smem_ptr[ii*THREADS_PER_HEAD*4]);
    }

    // Compute the partial output value for that thread.
    float sum = 0.f;
    #pragma unroll
    for( int ii = 0; ii < FLOAT4s_PER_THREAD; ++ii ) {
      sum += v[ii].x * gq[ii].x;
      sum += v[ii].y * gq[ii].y;
      sum += v[ii].z * gq[ii].z;
      sum += v[ii].w * gq[ii].w;
    }

    // Finalize the computation of the sum (if we have more than 1 thread per head).
    if( THREADS_PER_HEAD > 1 ) {

      // Finalize the sum for each head.
      #pragma unroll
      for( int mask = THREADS_PER_HEAD / 2; mask >= 1; mask /= 2 ) {
        sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
      }

      // Store to shared memory.
      if( oi == 0 ) {
        smem_[smem_curr].out_kv[so*D + oo] = sum;
      }

      // Make sure the data is in shared memory.
      __syncthreads();

      // Active threads read the data to store.
      if( si < hidden_size_per_head ) {
        sum = smem_[smem_curr].out_kv[so*D + si];
      }

    } // THREADS_PER_HEAD > 1.

    // Store the output. All the threads are active.
    if( si < hidden_size_per_head ) {
      *ptr_out_kv = sum;
    }

    // Move to next location.
    ptr_out_kv -= out_kv_stride_L;

    // Move the shared memory buffer.
    smem_curr = (smem_curr + 1) % 2;

    // Store to shared memory for Q and K.
    if( !is_last && si < D ) {
      smem_[smem_curr].qg[so*D + si] = ldg_qg; 
      smem_[smem_curr].kv[so*D + si] = ldg_kv; 
    }
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template< int D, int THREADS_PER_HEAD >
int lmha_bwd_(const Lmha_bwd_params<float> &params) {
  int block = D*THREADS_PER_HEAD*2;
  if( block >= 1024 || params.B > 65535 ) {
    return 1;
  }
  dim3 grid(params.H, params.B);
  lmha_bwd_kernel<D, THREADS_PER_HEAD><<<grid, block>>>(params);
  return 0;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

int lmha_bwd(const Lmha_bwd_params<float> &params) {
  int blocks = params.B * params.H;
  if( blocks < LOW_OCCUPANCY_THRESHOLD ) { 
    return 1;
  }

  int hidden_size_per_head = max(params.E, params.M);
  int res = 1;
  if( hidden_size_per_head <= 32 ) {
    res = lmha_bwd_< 32, 1>(params);
  } else if( hidden_size_per_head <= 64 ) {
    res = lmha_bwd_< 64, 1>(params);
  } else if( hidden_size_per_head <= 128 ) {
    res = lmha_bwd_<128, 2>(params);
  } else if( hidden_size_per_head <= 256 ) {
    res = lmha_bwd_<256, 4>(params);
  }
  return res;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

int lmha_bwd(const torch::Tensor queries,
             const torch::Tensor keys,
             const torch::Tensor values,
             const torch::Tensor grad_out,
             torch::Tensor grad_queries,
             torch::Tensor grad_keys,
             torch::Tensor grad_values) {

  // Make sure that we are using the correct GPU device
  torch::DeviceGuard _guard(queries.device());

  // Make sure the inner-most dimension of the tensors is packed.
  assert(queries     .stride(3) == 1);
  assert(keys        .stride(3) == 1);
  assert(values      .stride(3) == 1);
  assert(grad_out    .stride(3) == 1);
  assert(grad_queries.stride(3) == 1);
  assert(grad_keys   .stride(3) == 1);
  assert(grad_values .stride(3) == 1);

  // Extract the dimensions.
  int N = queries.size(0);
  int H = queries.size(1);
  int L = queries.size(2);
  int E = queries.size(3);
  int M = values.size (3);

  // Gradient on Q.

  // The structure of params.
  Lmha_params<float> params;
  set_params(params, grad_out, values, keys, grad_queries);

  // Launch the kernel.
  int res = lmha<false>(params);
  if( res ) {
    return res;
  }

  // Gradient on K and V together.

  Lmha_bwd_params<float> bwd_params;
  bwd_params.out_k = grad_keys.data_ptr<float>();
  bwd_params.out_v = grad_values.data_ptr<float>();
  bwd_params.q = queries.data_ptr<float>();
  bwd_params.k = keys.data_ptr<float>();
  bwd_params.v = values.data_ptr<float>();
  bwd_params.g = grad_out.data_ptr<float>();

  bwd_params.B = N;
  bwd_params.L = L;
  bwd_params.H = H;
  bwd_params.E = E;
  bwd_params.M = M;

  bwd_params.q_stride_B = queries.stride(0);
  bwd_params.q_stride_H = queries.stride(1);
  bwd_params.q_stride_L = queries.stride(2);
  bwd_params.k_stride_B = keys.stride(0);
  bwd_params.k_stride_H = keys.stride(1);
  bwd_params.k_stride_L = keys.stride(2);
  bwd_params.v_stride_B = values.stride(0);
  bwd_params.v_stride_H = values.stride(1);
  bwd_params.v_stride_L = values.stride(2);
  bwd_params.g_stride_B = grad_out.stride(0);
  bwd_params.g_stride_H = grad_out.stride(1);
  bwd_params.g_stride_L = grad_out.stride(2);

  bwd_params.out_k_stride_B = grad_keys.stride(0);
  bwd_params.out_k_stride_H = grad_keys.stride(1);
  bwd_params.out_k_stride_L = grad_keys.stride(2);
  bwd_params.out_v_stride_B = grad_values.stride(0);
  bwd_params.out_v_stride_H = grad_values.stride(1);
  bwd_params.out_v_stride_L = grad_values.stride(2);

  // Try to run the fused kernel.
  int fallback = lmha_bwd(bwd_params);

  // If it failed, fallback on separate kernels for K and V.
  if( fallback ) {

    // Gradient on K.

    // Launch the kernel.
    set_params(params, values, grad_out, queries, grad_keys);
    res = lmha<true>(params);
    if( res ) {
      return res;
    }

    // Gradient on V.

    // Launch the kernel.
    set_params(params, keys, queries, grad_out, grad_values);
    return lmha<true>(params);
  }

  // It worked...
  return 0;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

} // namespace nvidia
#endif // #ifdef ENABLE_NVIDIA_OPTIMIZATIONS

////////////////////////////////////////////////////////////////////////////////////////////////////

typedef torch::PackedTensorAccessor32<float, 4, torch::RestrictPtrTraits> float_accessor;

#define E_BLOCK_SIZE 8

__global__ void causal_dot_product_kernel(
    const float_accessor queries,
    const float_accessor keys,
    const float_accessor values,
    float_accessor result,
    const int N,
    const int H,
    const int L,
    const int E,
    const int M
) {
    int n = blockIdx.y;
    int h = blockIdx.z;

    int e_start = blockIdx.x * E_BLOCK_SIZE;
    int m = threadIdx.x % M;

    extern __shared__ float shared_mem[];
    float* shared_kv = shared_mem;

    for (int e_local = 0; e_local < E_BLOCK_SIZE && e_local + e_start < E; e_local++) {
      shared_kv[m + e_local * M] = 0;
    }

    for (int t=0; t<L; t++) {
      float res = 0;
      for (int e_local = 0; e_local < E_BLOCK_SIZE && e_local + e_start < E; e_local++) {
        shared_kv[e_local*M + m] += keys[n][h][t][e_local + e_start] * values[n][h][t][m];
        res += queries[n][h][t][e_local + e_start] * shared_kv[e_local*M + m];
      }
      atomicAdd(
          &result[n][h][t][m],
          res
      );
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

void causal_dot_product_(const torch::Tensor queries,
                         const torch::Tensor keys,
                         const torch::Tensor values,
                         torch::Tensor product) {
    // Make sure that we are using the correct GPU device
    torch::DeviceGuard _guard(queries.device());

    int N = queries.size(0);
    int H = queries.size(1);
    int L = queries.size(2);
    int E = queries.size(3);
    int M = values.size(3);

    const int blocks_per_sequence = (E + E_BLOCK_SIZE - 1) / E_BLOCK_SIZE;

    dim3 blockDim(M, 1, 1);
    dim3 gridDim(blocks_per_sequence, N, H);
    const int shared_mem_forward = E_BLOCK_SIZE * M * sizeof(float);

    causal_dot_product_kernel<<<gridDim, blockDim, shared_mem_forward>>>(
      queries.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      keys.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      values.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      product.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      N, H, L, E, M
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

void causal_dot_product(const torch::Tensor queries,
                        const torch::Tensor keys,
                        const torch::Tensor values,
                        torch::Tensor product) {
#ifdef ENABLE_NVIDIA_OPTIMIZATIONS
  int fallback = nvidia::lmha_fwd(queries, keys, values, product);
#else
  int fallback = 1;
#endif
  if( fallback ) {
    causal_dot_product_(queries, keys, values, product);
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

#define M_BLOCK_SIZE 4

// we need shared memory to store
// kv
// Backward direction
// kv_backwards
// Shared memory usage
__global__ void causal_dot_backward_query_key_kernel(
    const float_accessor queries,
    const float_accessor keys,
    const float_accessor values,
    const float_accessor grad_out,
    float_accessor grad_queries,
    float_accessor grad_keys,
    int N,
    int H,
    int L,
    int E,
    int M
) {
    int n = blockIdx.y;
    int h = blockIdx.z;

    int m_start = blockIdx.x * M_BLOCK_SIZE;
    int e = threadIdx.x % E;

    extern __shared__ float shared_mem[];
    const int shared_kv_size = M_BLOCK_SIZE * E;
    float* shared_kv = shared_mem;
    float* shared_kv_bw = shared_mem + shared_kv_size;

    for (int m_local = 0; m_local < M_BLOCK_SIZE && m_local + m_start < M; m_local++) {
      shared_kv[m_local * E + e] = 0;
      shared_kv_bw[m_local * E + e] = 0;
    }

    for (int l=0; l<L; l++) {
      float res = 0, res_bw = 0;
      int l_b = L - l - 1;
      for (int m_local = 0; m_local < M_BLOCK_SIZE && m_local + m_start < M; m_local++) {
        shared_kv[m_local*E + e] += keys[n][h][l][e] * values[n][h][l][m_start + m_local];
        shared_kv_bw[m_local*E + e] += queries[n][h][l_b][e] * grad_out[n][h][l_b][m_start + m_local];
        res += grad_out[n][h][l][m_start + m_local] * shared_kv[m_local*E + e];
        res_bw += values[n][h][l_b][m_start + m_local] * shared_kv_bw[m_local*E + e];
      }
      atomicAdd(
        &grad_queries[n][h][l][e],
        res
      );
      atomicAdd(
        &grad_keys[n][h][l_b][e],
        res_bw
      );
    }
}


__global__ void causal_dot_backward_value_kernel(
    const float_accessor queries,
    const float_accessor keys,
    const float_accessor values,
    const float_accessor grad_out,
    float_accessor grad_keys,
    float_accessor grad_values,
    int N,
    int H,
    int L,
    int E,
    int M
) {
    int n = blockIdx.y;
    int h = blockIdx.z;

    int e_start = blockIdx.x * E_BLOCK_SIZE;
    int m = threadIdx.x % M;

    extern __shared__ float shared_mem[];
    float* shared_kv = shared_mem;
    for (int e_local = 0; e_local < E_BLOCK_SIZE && e_local + e_start < E; e_local++) {
      shared_kv[m + e_local * M] = 0;
    }

    for (int l = 0; l < L; l++) {
        int l_b = L - l -1;
        float res = 0;
        for (int e_local = 0; e_local < E_BLOCK_SIZE && e_local + e_start < E; e_local++) {
          shared_kv[e_local*M + m] += queries[n][h][l_b][e_start + e_local] * grad_out[n][h][l_b][m];
          res += keys[n][h][l_b][e_start + e_local] * shared_kv[e_local*M + m];
        }
        atomicAdd(
            &grad_values[n][h][l_b][m],
            res
        );
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

void causal_dot_backward_(const torch::Tensor queries,
                          const torch::Tensor keys,
                          const torch::Tensor values,
                          const torch::Tensor grad_out,
                          torch::Tensor grad_queries,
                          torch::Tensor grad_keys,
                          torch::Tensor grad_values) {

    // Make sure that we are using the correct GPU device
    torch::DeviceGuard _guard(queries.device());

    int N = queries.size(0);
    int H = queries.size(1);
    int L = queries.size(2);
    int E = queries.size(3);
    int M = values.size(3);

    const int blocks_per_sequence = (M + M_BLOCK_SIZE - 1) / M_BLOCK_SIZE;

    dim3 blockDim(E, 1, 1);
    dim3 gridDim(blocks_per_sequence, N, H);
    const int shared_mem_qk_backward = 2 * M_BLOCK_SIZE * E * sizeof(float);

    causal_dot_backward_query_key_kernel<<<gridDim, blockDim, shared_mem_qk_backward>>>(
      queries.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      keys.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      values.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      grad_out.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      grad_queries.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      grad_keys.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      N, H, L, E, M
    );

    const int blocks_per_sequence_value = (E + E_BLOCK_SIZE - 1) / E_BLOCK_SIZE;

    dim3 blockDimv(M, 1, 1);
    dim3 gridDimv(blocks_per_sequence_value, N, H);
    const int shared_mem_v_backward = E_BLOCK_SIZE * M * sizeof(float);
    causal_dot_backward_value_kernel<<<gridDimv, blockDimv, shared_mem_v_backward>>>(
      queries.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      keys.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      values.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      grad_out.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      grad_keys.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      grad_values.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
      N, H, L, E, M
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

void causal_dot_backward(const torch::Tensor queries,
                         const torch::Tensor keys,
                         const torch::Tensor values,
                         const torch::Tensor grad_out,
                         torch::Tensor grad_queries,
                         torch::Tensor grad_keys,
                         torch::Tensor grad_values) {
#ifdef ENABLE_NVIDIA_OPTIMIZATIONS
  int fallback = nvidia::lmha_bwd(queries,
                                  keys,
                                  values,
                                  grad_out,
                                  grad_queries,
                                  grad_keys,
                                  grad_values);
#else
  int fallback = 1;
#endif
  if( fallback ) {
    // Make sure that the gradient tensors are 0. This is needed because the
    // bwd pass might have partially executed and filled in some values in
    // grad_queries or grad_keys.
    //
    // This adds a small overhead every time we have to fall back to the old
    // kernel for the backward pass.
    grad_queries.zero_();
    grad_keys.zero_();
    causal_dot_backward_(queries, keys, values, grad_out, grad_queries, grad_keys, grad_values);
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def(
        "causal_dot_product",
        &causal_dot_product,
        "Compute the weighted sum of values but attending only to previous "
        "values."
    );
    m.def(
        "causal_dot_backward",
        &causal_dot_backward,
        "Compute the gradients for the causal dot product."
    );
}