Spaces:
Running
Running
File size: 17,231 Bytes
e48391e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import json
import os
import re
from datetime import datetime
from typing import Tuple
import pandas as pd
from bs4 import BeautifulSoup
def format_datetime(dt_str: str) -> str:
"""
Format a datetime string for display.
:param dt_str: String representing a datetime in ISO format
:return: Formatted datetime string
"""
return dt_str.replace("T", " ").split("+")[0]
def read_json_line_by_line(file_path):
"""
Read a JSON file line by line, parsing each line as a separate JSON object.
:param file_path: Path to the JSON file
:return: List of parsed JSON objects
This function is useful for reading large JSON files that contain one JSON object
per line. It handles JSON parsing errors gracefully, skipping invalid lines.
"""
data = []
with open(file_path, "r") as f:
for line in f:
try:
item = json.loads(line.strip())
data.append(item)
except json.JSONDecodeError:
print(f"Skipping invalid JSON in {file_path}: {line}")
return data
def calculate_change(new: float, old: float, metric_name: str) -> Tuple[float, str]:
"""Calculate percentage change and return with appropriate emoji."""
pct_change = new - old
if abs(pct_change) < 1:
emoji = "βοΈ"
elif pct_change > 0:
emoji = "π’" if "wer" not in metric_name.lower() else "β"
else:
emoji = "β" if "wer" not in metric_name.lower() else "π’"
return (pct_change, emoji)
def has_changes(config, prev_dict, curr_dict):
"""Check if any metrics have changed."""
curr = curr_dict[config]
prev = prev_dict[config]
metrics = ["speed", "tokens_per_second", "average_wer", "qoi"]
for key in metrics:
if key in curr and key in prev:
curr_val = curr[key]
prev_val = prev[key]
if abs(curr_val - prev_val) >= 1: # 1% threshold
return True
return False
def format_metrics_table(config, prev_dict, curr_dict):
"""Format metrics into a table string."""
curr = curr_dict[config]
prev = prev_dict[config]
metrics = [
("Speed", "speed"),
("Tok/s", "tokens_per_second"),
("WER", "average_wer"),
("QoI", "qoi"),
]
table = "```\nMetric Previous Current Change\n--------------------------------\n"
for metric_name, key in metrics:
if key in curr and key in prev:
curr_val = curr[key]
prev_val = prev[key]
pct_change, _ = calculate_change(curr_val, prev_val, metric_name)
if abs(pct_change) >= 1: # Only show metrics with changes
table += f"{metric_name:<9} {prev_val:<11.2f} {curr_val:<10.2f} {pct_change:.2f}\n"
table += "```"
return table
def extract_status_and_os(cell_value):
"""
Extract status and OS versions from a cell, handling both HTML and plain text.
Returns list of tuples: [(status, os_version), ...]
"""
results = []
cell_value = str(cell_value)
# First, handle the case where there's no HTML tags
if cell_value == "Not Supported":
return results
# Split the cell into parts (first element and subsequent <p> elements)
parts = cell_value.split("<p>")
for part in parts:
part = part.strip("</p>")
if not part:
continue
# Check if part contains warning symbol
if "β οΈ" in part:
# Parse HTML to extract OS version from anchor tag
soup = BeautifulSoup(part, "html.parser")
# Find text after href that contains OS version
text = soup.get_text()
os_match = re.search(r"(iOS|iPadOS|macOS)\s+[\d.]+", text)
if os_match:
os_version = os_match.group(0)
results.append(("β οΈ", os_version))
else:
# For success cases, OS version is directly in the text
os_match = re.search(r"(iOS|iPadOS|macOS)\s+[\d.]+", part)
if os_match:
os_version = os_match.group(0)
results.append(("β
", os_version))
return results
def escape_string(s: str) -> str:
"""Escape a string to be used as a value in JSON."""
return (
s.replace("\\", "\\\\")
.replace('"', '\\"')
.replace("\n", "\\n")
.replace("\r", "\\r")
)
def analyze_support_changes(prev_csv, curr_csv):
"""Analyze support changes between CSV files."""
# Read CSV files
prev_df = pd.read_csv(prev_csv)
prev_df.set_index(prev_df.columns[0], inplace=True)
curr_df = pd.read_csv(curr_csv)
curr_df.set_index(curr_df.columns[0], inplace=True)
# Get device lists (excluding first column which is the index)
prev_devices = sorted(prev_df.columns[1:])
curr_devices = sorted(curr_df.columns[1:])
# Calculate device ratio
device_ratio = len(curr_devices) / len(prev_devices) if prev_devices else 1
needs_alert = device_ratio < 0.9 # Alert if less than 90% of previous devices
# Convert to dictionary for easier comparison
prev_status = {}
curr_status = {}
# Process previous data
for idx in range(len(prev_df)):
model = prev_df.index[idx]
for col_idx in range(1, len(prev_df.columns)):
cell_value = prev_df.iloc[idx, col_idx]
device = prev_df.columns[col_idx]
statuses = extract_status_and_os(cell_value)
for status, os_version in statuses:
prev_status[(model, device, os_version)] = status
# Process current data and track new configurations
new_configs = []
for idx in range(len(curr_df)):
model = curr_df.index[idx]
for col_idx in range(1, len(curr_df.columns)):
cell_value = curr_df.iloc[idx, col_idx]
device = curr_df.columns[col_idx]
statuses = extract_status_and_os(cell_value)
for status, os_version in statuses:
curr_status[(model, device, os_version)] = status
# Check if this is a new configuration
if (model, device, os_version) not in prev_status:
new_configs.append((model, device, os_version))
# Find changes
fixed_errors = []
new_errors = []
# Check all configurations that exist in both datasets
common_configs = set(prev_status.keys()) & set(curr_status.keys())
for config in common_configs:
model, device, os_version = config
if prev_status[config] == "β οΈ" and curr_status[config] == "β
":
fixed_errors.append((model, device, os_version))
elif prev_status[config] == "β
" and curr_status[config] == "β οΈ":
new_errors.append((model, device, os_version))
return fixed_errors, new_errors, new_configs, needs_alert
def generate_report():
# Load current and previous data
prev_perf_data = read_json_line_by_line("report_data/performance_data.json")
curr_perf_data = read_json_line_by_line("dashboard_data/performance_data.json")
prev_dict = {(d["model"], d["device"], d["os"]): d for d in prev_perf_data}
curr_dict = {(d["model"], d["device"], d["os"]): d for d in curr_perf_data}
common_configs = set(curr_dict.keys()) & set(prev_dict.keys())
# Load version data
with open("report_data/version.json", "r") as f:
prev_version = json.load(f)
with open("dashboard_data/version.json", "r") as f:
curr_version = json.load(f)
prev_releases = set(prev_version.get("releases", []))
curr_releases = set(curr_version.get("releases", []))
new_releases = curr_releases - prev_releases
removed_releases = prev_releases - curr_releases
# Track metrics
total_configs = len(common_configs)
improved_metrics = {"speed": 0, "tokens_per_second": 0, "average_wer": 0, "qoi": 0}
regressed_metrics = {"speed": 0, "tokens_per_second": 0, "average_wer": 0, "qoi": 0}
new_data_points = len(set(curr_dict.keys()) - set(prev_dict.keys()))
# Analyze support changes
fixed_errors, new_errors, new_configs, needs_alert = analyze_support_changes(
"report_data/support_data.csv", "dashboard_data/support_data.csv"
)
# Create Slack blocks
current_time = datetime.now().strftime("%B %-d, %Y %H:%M:%S")
prev_release_tag, curr_release_tag = (
prev_version["whisperkit_version"],
curr_version["whisperkit_version"],
)
slack_blocks = {
"blocks": [
{
"type": "header",
"text": {
"type": "plain_text",
"text": "π WhisperKit Dataset Update Report π",
"emoji": True,
},
},
{
"type": "context",
"elements": [{"text": f"*{current_time}*", "type": "mrkdwn"}],
},
{"type": "divider"},
{
"type": "section",
"text": {"type": "mrkdwn", "text": "βΉοΈ *CURRENT VERSION INFO* βΉοΈ"},
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ *Last Modified:* `{format_datetime(curr_version['last_modified'])}`",
},
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ *Dataset SHA:* `{curr_version['sha']}`",
},
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ *Current Releases:* {', '.join(f'`{r}`' for r in curr_version['releases'])}",
},
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ *Current Release Tag:* `{curr_release_tag}`",
},
},
{"type": "divider"},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "π *SUMMARY OF PERFORMANCE UPDATES* π",
},
},
]
}
# Add release information
slack_blocks["blocks"].extend(
[
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ *Added Releases:* {', '.join(sorted(new_releases)) if new_releases else 'None'}",
},
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ *Removed Releases:* {', '.join(sorted(removed_releases)) if removed_releases else 'None'}",
},
},
]
)
if prev_release_tag != curr_release_tag:
slack_blocks["blocks"].append(
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ *Release Tag Change:* `{prev_release_tag}` β `{curr_release_tag}`",
},
}
)
slack_blocks["blocks"].extend(
[
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "\n",
},
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ *New Data Points:* `{new_data_points}` new configurations",
},
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "\n",
},
},
]
)
# Add metrics summary
for metric_name, key in [
("Speed", "speed"),
("Tok/s", "tokens_per_second"),
("WER", "average_wer"),
("QoI", "qoi"),
]:
slack_blocks["blocks"].append(
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ *{metric_name}:* `{improved_metrics[key]}` improved, `{regressed_metrics[key]}` regressed",
},
}
)
# Add support changes section
if fixed_errors or new_errors or new_configs:
slack_blocks["blocks"].extend(
[
{"type": "divider"},
{
"type": "section",
"text": {"type": "mrkdwn", "text": "π± *DEVICE SUPPORT CHANGES* π±"},
},
]
)
if fixed_errors:
slack_blocks["blocks"].extend(
[
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*Successful Configurations That Override Previous Failures*",
},
}
]
)
for model, device, os_version in sorted(fixed_errors):
slack_blocks["blocks"].append(
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ {model} on {device} ({os_version})",
},
}
)
if new_errors:
slack_blocks["blocks"].extend(
[
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*Failed Configurations That Override Previous Successes*",
},
}
]
)
for model, device, os_version in sorted(new_errors):
slack_blocks["blocks"].append(
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ {model} on {device} ({os_version})",
},
}
)
if new_configs:
slack_blocks["blocks"].extend(
[
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*Newly Tested Configurations*",
},
}
]
)
for model, device, os_version in sorted(new_configs):
slack_blocks["blocks"].append(
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"β’ {model} on {device} ({os_version})",
},
}
)
# Add alert if significant decrease in device count
if needs_alert:
slack_blocks["blocks"].append(
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "β οΈ *ALERT:* Current device count is less than 90% of previous version's device count, test on more devices before updating the benchmark website!",
},
}
)
# Create performance text as a single mrkdwn string
if common_configs:
performance_text = "π‘ *Performance Updates* π‘\n\n"
# Group by model for better organization
models = sorted(set(model for model, _, _ in common_configs))
for model in models:
model_configs = sorted([cfg for cfg in common_configs if cfg[0] == model])
for config in model_configs:
device_info = f"*{model}* ({config[2]})"
if not has_changes(config, prev_dict, curr_dict):
# If no changes, just add the model with a checkmark
performance_text += f"{device_info} β
\n\n"
else:
# If there are changes, show the metrics
performance_text += f"{device_info}\n"
performance_text += format_metrics_table(
config, prev_dict, curr_dict
)
performance_text += "\n\n"
# Write to GITHUB_OUTPUT
github_output = os.getenv("GITHUB_OUTPUT")
if github_output:
with open(github_output, "a") as f:
f.write("slack_message_payload<<EOF\n")
json.dump(slack_blocks, f, indent=2)
f.write("\nEOF\n")
with open(github_output, "a") as f:
escaped_text = escape_string(performance_text)
print(f"performance_message={escaped_text}", file=f)
if __name__ == "__main__":
generate_report()
|