File size: 8,608 Bytes
099e99c
3c2fc33
 
 
 
 
 
 
 
cd47483
099e99c
7b7c1be
fd2f716
 
3c2fc33
 
 
e044b6a
3c2fc33
e044b6a
3c2fc33
e044b6a
3c2fc33
e044b6a
3c2fc33
e044b6a
3c2fc33
e044b6a
ffa2ee0
3c2fc33
e044b6a
ffa2ee0
3c2fc33
e044b6a
ffa2ee0
fb096d2
e044b6a
ffa2ee0
3c2fc33
e044b6a
3c2fc33
 
 
 
 
 
 
 
fb096d2
 
 
 
 
 
 
 
 
 
 
 
 
 
3922cde
fb096d2
 
 
 
cd47483
fb096d2
 
3922cde
7b7c1be
fb096d2
 
 
 
 
 
 
 
 
 
3922cde
fb096d2
 
 
cd47483
fb096d2
 
3922cde
7b7c1be
fb096d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd47483
fb096d2
 
 
7b7c1be
fb096d2
 
 
 
 
 
 
 
 
 
 
3c2fc33
 
 
 
 
 
 
3922cde
3c2fc33
 
 
 
 
07a8bbc
3c2fc33
 
 
 
 
 
cd47483
3c2fc33
cd47483
3c2fc33
 
 
 
 
 
 
 
 
 
cd47483
 
3c2fc33
3922cde
7b7c1be
07a8bbc
e756bd8
 
3c2fc33
 
e756bd8
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd47483
 
3c2fc33
 
7b7c1be
3c2fc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import random
from typing import List

from distilabel.llms import InferenceEndpointsLLM
from distilabel.steps.tasks import (
    GenerateTextClassificationData,
    TextClassification,
    TextGeneration,
)
from pydantic import BaseModel, Field

from synthetic_dataset_generator.constants import BASE_URL, MAX_NUM_TOKENS, MODEL
from synthetic_dataset_generator.pipelines.base import _get_next_api_key
from synthetic_dataset_generator.utils import get_preprocess_labels

PROMPT_CREATION_PROMPT = """You are an AI assistant specialized in generating very precise text classification tasks for dataset creation.

Your should write a prompt following a the dataset description. Respond with the prompt and nothing else.

The prompt should follow the same style and structure as the following example prompts, clearly specifying the possible classification labels.

Make sure to always include all of the detailed information from the description and the context of the company that is provided.

Don't include the labels in the classification_task but only provide a high level description of the classification task.

If a label is composed of multiple words, use a hyphen to separate them. For example, 'smartphone-review', 'customer-service', 'product-quality'.:

Description: DavidMovieHouse is a cinema that has been in business for 10 years.
Output: {"classification_task": "The company DavidMovieHouse is a cinema that has been in business for 10 years and has had customers reviews of varying customer groups. Classify the customer reviews as", "labels": ["positive", "negative"]}

Description: A dataset that focuses on creating neo-ludite discussions about technologies within the AI space.
Output: {"classification_task": "Neo-ludiite discussions about technologies within the AI space cover from different speaking people    . Categorize the discussions into one of the following categories", "labels": ["tech-support", "tech-opposition"]}

Description: A dataset that covers the articles of a niche sports website called TheSportBlogs that focuses on female sports within the ballsport domain for the US market.
Output: {"classification_task": "TechSportBlogs is a niche sports website that focuses on female sports within the ballsport domain for the US market. Written by different journalists. Determine the category of based on the article using the following categories", "labels": ["basketball", "volleyball", "tennis", "hockey", "baseball", "soccer"]}

Description: A dataset covering customer reviews for an e-commerce website called Argilla that sells technology datasets within the open source Natural Language Processing space and has review with labels "data-quality", "data-accuracy", "customer-service", "price", "product-availability", "shipping-speed"
Output: {"classification_task": "A dataset covering customer reviews for an e-commerce website called Argilla that sells technology datasets within the open source Natural Language Processing space and has review from various cusomer demographics with labels", "labels": ["data-quality", "data-accuracy", "customer-service", "price", "product-availability", "shipping-speed"]}

Description:
"""

DEFAULT_DATASET_DESCRIPTIONS = [
    "A dataset covering customer reviews for an e-commerce website.",
    "A dataset covering news articles about various topics.",
]


class TextClassificationTask(BaseModel):
    classification_task: str = Field(
        ...,
        title="classification_task",
        description="The classification task to be performed.",
    )

    labels: list[str] = Field(
        ...,
        title="Labels",
        description="The possible labels for the classification task.",
    )


def get_prompt_generator():
    prompt_generator = TextGeneration(
        llm=InferenceEndpointsLLM(
            api_key=_get_next_api_key(),
            model_id=MODEL,
            base_url=BASE_URL,
            structured_output={"format": "json", "schema": TextClassificationTask},
            generation_kwargs={
                "temperature": 0.8,
                "max_new_tokens": MAX_NUM_TOKENS,
                "do_sample": True,
            },
        ),
        system_prompt=PROMPT_CREATION_PROMPT,
        use_system_prompt=True,
    )
    prompt_generator.load()
    return prompt_generator


def get_textcat_generator(difficulty, clarity, temperature, is_sample):
    textcat_generator = GenerateTextClassificationData(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            base_url=BASE_URL,
            api_key=_get_next_api_key(),
            generation_kwargs={
                "temperature": temperature,
                "max_new_tokens": 256 if is_sample else MAX_NUM_TOKENS,
                "do_sample": True,
                "top_k": 50,
                "top_p": 0.95,
            },
        ),
        difficulty=None if difficulty == "mixed" else difficulty,
        clarity=None if clarity == "mixed" else clarity,
        seed=random.randint(0, 2**32 - 1),
    )
    textcat_generator.load()
    return textcat_generator


def get_labeller_generator(system_prompt, labels, num_labels):
    labeller_generator = TextClassification(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            base_url=BASE_URL,
            api_key=_get_next_api_key(),
            generation_kwargs={
                "temperature": 0.7,
                "max_new_tokens": MAX_NUM_TOKENS,
            },
        ),
        context=system_prompt,
        available_labels=labels,
        n=num_labels,
        default_label="unknown",
    )
    labeller_generator.load()
    return labeller_generator


def generate_pipeline_code(
    system_prompt: str,
    difficulty: str = None,
    clarity: str = None,
    labels: List[str] = None,
    num_labels: int = 1,
    num_rows: int = 10,
    temperature: float = 0.9,
) -> str:
    labels = get_preprocess_labels(labels)
    base_code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints]`
import os
import random
from distilabel.llms import InferenceEndpointsLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import LoadDataFromDicts, KeepColumns
from distilabel.steps.tasks import {"GenerateTextClassificationData" if num_labels == 1 else "GenerateTextClassificationData, TextClassification"}

MODEL = "{MODEL}"
BASE_URL = "{BASE_URL}"
TEXT_CLASSIFICATION_TASK = "{system_prompt}"
os.environ["API_KEY"] = (
    "hf_xxx"  # https://huggingface.co./settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained
)

with Pipeline(name="textcat") as pipeline:

    task_generator = LoadDataFromDicts(data=[{{"task": TEXT_CLASSIFICATION_TASK}}])

    textcat_generation = GenerateTextClassificationData(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            base_url=BASE_URL,
            api_key=os.environ["API_KEY"],
            generation_kwargs={{
                "temperature": {temperature},
                "max_new_tokens": {MAX_NUM_TOKENS},
                "do_sample": True,
                "top_k": 50,
                "top_p": 0.95,
            }},
        ),
        seed=random.randint(0, 2**32 - 1),
        difficulty={None if difficulty == "mixed" else repr(difficulty)},
        clarity={None if clarity == "mixed" else repr(clarity)},
        num_generations={num_rows},
        output_mappings={{"input_text": "text"}},
    )
    """

    if num_labels == 1:
        return (
            base_code
            + """
    keep_columns = KeepColumns(
        columns=["text", "label"],
    )

    # Connect steps in the pipeline
    task_generator >> textcat_generation >> keep_columns

    if __name__ == "__main__":
        distiset = pipeline.run()
    """
        )

    return (
        base_code
        + f"""
    keep_columns = KeepColumns(
        columns=["text"],
    )

    textcat_labeller = TextClassification(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            base_url=BASE_URL,
            api_key=os.environ["API_KEY"],
            generation_kwargs={{
                "temperature": 0.8,
                "max_new_tokens": {MAX_NUM_TOKENS},
            }},
        ),
        n={num_labels},
        available_labels={labels},
        context=TEXT_CLASSIFICATION_TASK,
        default_label="unknown"
    )

    # Connect steps in the pipeline
    task_generator >> textcat_generation >> keep_columns >> textcat_labeller

    if __name__ == "__main__":
        distiset = pipeline.run()
    """
    )