File size: 20,771 Bytes
fb096d2
e044b6a
099e99c
3c2fc33
 
 
 
 
099e99c
 
3c2fc33
 
fd2f716
ffa2ee0
3c2fc33
e044b6a
fb096d2
7b7c1be
3c2fc33
099e99c
3c2fc33
fd2f716
3c2fc33
 
 
fd2f716
3c2fc33
 
 
 
 
 
fd2f716
7314f90
099e99c
 
fb096d2
099e99c
fd2f716
3c2fc33
 
9dcfb8f
 
c4435ca
 
 
9dcfb8f
 
 
3922cde
136bd13
 
3922cde
136bd13
fb096d2
3c2fc33
 
 
 
 
 
 
 
136bd13
fb096d2
 
 
 
099e99c
88a4065
 
ec82642
88a4065
fb096d2
099e99c
fb096d2
 
 
ec82642
099e99c
 
 
 
fb096d2
3c2fc33
 
 
 
 
 
 
ec82642
3c2fc33
3922cde
3c2fc33
 
 
7b7c1be
136bd13
3c2fc33
 
d982700
 
 
 
3c2fc33
5d3be21
 
 
3c2fc33
5d3be21
3c2fc33
ec82642
3c2fc33
 
 
 
 
 
 
 
 
fb096d2
3c2fc33
136bd13
3c2fc33
 
 
e044b6a
 
ec82642
93f233e
 
 
 
 
e044b6a
ec82642
b8a81f2
 
e044b6a
 
ffa2ee0
 
 
e044b6a
3c2fc33
 
 
 
 
 
 
136bd13
fb096d2
 
 
3c2fc33
fb096d2
3c2fc33
136bd13
3c2fc33
fb096d2
 
 
 
 
 
 
 
 
3c2fc33
 
 
fb096d2
88a4065
3c2fc33
 
 
ec82642
e044b6a
 
 
 
 
 
5d3be21
e044b6a
 
 
 
5d3be21
ec82642
 
 
5d3be21
 
 
ec82642
5d3be21
ec82642
136bd13
3c2fc33
 
 
099e99c
 
 
 
ec82642
099e99c
 
 
e044b6a
ffa2ee0
099e99c
ffa2ee0
099e99c
ffa2ee0
099e99c
ffa2ee0
ec82642
099e99c
 
 
 
 
 
ec82642
 
 
 
ffa2ee0
 
 
 
099e99c
 
 
 
 
 
 
e044b6a
ffa2ee0
099e99c
 
fb096d2
099e99c
 
 
 
 
ec82642
fb096d2
099e99c
 
3922cde
e044b6a
099e99c
 
 
 
 
 
 
ec82642
099e99c
fb096d2
3922cde
099e99c
 
e044b6a
 
 
ec82642
e044b6a
 
 
 
099e99c
88a4065
099e99c
 
 
 
 
 
88a4065
 
 
099e99c
 
 
 
 
 
 
 
 
 
 
ec82642
099e99c
 
 
 
 
ec82642
 
 
 
 
 
 
099e99c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb096d2
099e99c
 
 
 
 
 
 
 
 
 
 
136bd13
099e99c
 
 
 
 
 
 
 
 
 
 
ec82642
099e99c
ec82642
099e99c
 
 
 
ec82642
099e99c
ec82642
099e99c
 
 
 
 
 
 
 
 
136bd13
099e99c
 
 
 
 
3c2fc33
 
 
 
 
 
 
60fd999
fb096d2
 
 
 
 
 
 
 
 
 
 
 
 
6521775
7314f90
14f85b1
7314f90
fb096d2
7314f90
 
 
 
714b133
9dcfb8f
714b133
 
 
76d10ec
 
 
 
86f370f
7314f90
 
 
 
fb096d2
7314f90
 
 
fb096d2
136bd13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec82642
 
 
136bd13
187357b
136bd13
 
 
 
 
 
 
 
 
 
 
ffa2ee0
136bd13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7314f90
 
14f85b1
fb096d2
 
7314f90
 
 
 
 
 
 
fb096d2
7314f90
 
 
 
 
714b133
86f370f
714b133
 
 
 
 
 
7314f90
 
 
 
 
 
 
 
791a4a1
 
bec79d4
791a4a1
fb096d2
86f370f
fb096d2
 
 
 
 
 
 
 
ec82642
fb096d2
3922cde
fb096d2
 
 
 
 
 
7314f90
fb096d2
099e99c
3922cde
fb096d2
099e99c
 
 
ec82642
099e99c
 
fb096d2
 
 
 
ec82642
fb096d2
 
 
 
099e99c
3c2fc33
099e99c
3c2fc33
 
 
099e99c
3c2fc33
 
 
 
 
 
 
 
fb096d2
 
 
 
 
099e99c
 
 
 
 
 
ec82642
fb096d2
099e99c
 
d982700
e044b6a
099e99c
 
3c2fc33
 
fb096d2
099e99c
3c2fc33
fb096d2
 
 
 
 
 
 
ec82642
fb096d2
d982700
fb096d2
 
 
 
 
 
3c2fc33
fb096d2
9dcfb8f
 
 
 
 
 
 
 
 
 
 
 
fb096d2
099e99c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import json
import random
import uuid
from typing import List, Union

import argilla as rg
import gradio as gr
import pandas as pd
from datasets import ClassLabel, Dataset, Features, Sequence, Value
from distilabel.distiset import Distiset
from huggingface_hub import HfApi

from src.synthetic_dataset_generator.apps.base import (
    combine_datasets,
    hide_success_message,
    push_pipeline_code_to_hub,
    show_success_message,
    test_max_num_rows,
    validate_argilla_user_workspace_dataset,
    validate_push_to_hub,
)
from src.synthetic_dataset_generator.pipelines.embeddings import (
    get_embeddings,
    get_sentence_embedding_dimensions,
)
from src.synthetic_dataset_generator.pipelines.textcat import (
    DEFAULT_DATASET_DESCRIPTIONS,
    generate_pipeline_code,
    get_labeller_generator,
    get_prompt_generator,
    get_textcat_generator,
)
from src.synthetic_dataset_generator.utils import (
    get_argilla_client,
    get_org_dropdown,
    get_preprocess_labels,
    swap_visibility,
)
from synthetic_dataset_generator.constants import DEFAULT_BATCH_SIZE


def _get_dataframe():
    return gr.Dataframe(
        headers=["labels", "text"],
        wrap=True,
        interactive=False,
    )


def generate_system_prompt(dataset_description, progress=gr.Progress()):
    progress(0.0, desc="Starting")
    progress(0.3, desc="Initializing")
    generate_description = get_prompt_generator()
    progress(0.7, desc="Generating")
    result = next(
        generate_description.process(
            [
                {
                    "instruction": dataset_description,
                }
            ]
        )
    )[0]["generation"]
    progress(1.0, desc="Prompt generated")
    data = json.loads(result)
    system_prompt = data["classification_task"]
    labels = data["labels"]
    return system_prompt, labels


def generate_sample_dataset(
    system_prompt, difficulty, clarity, labels, multi_label, progress=gr.Progress()
):
    dataframe = generate_dataset(
        system_prompt=system_prompt,
        difficulty=difficulty,
        clarity=clarity,
        labels=labels,
        multi_label=multi_label,
        num_rows=10,
        progress=progress,
        is_sample=True,
    )
    return dataframe


def generate_dataset(
    system_prompt: str,
    difficulty: str,
    clarity: str,
    labels: List[str] = None,
    multi_label: bool = False,
    num_rows: int = 10,
    temperature: float = 0.9,
    is_sample: bool = False,
    progress=gr.Progress(),
) -> pd.DataFrame:
    num_rows = test_max_num_rows(num_rows)
    progress(0.0, desc="(1/2) Generating dataset")
    labels = get_preprocess_labels(labels)
    textcat_generator = get_textcat_generator(
        difficulty=difficulty,
        clarity=clarity,
        temperature=temperature,
        is_sample=is_sample,
    )
    updated_system_prompt = f"{system_prompt}. Optional labels: {', '.join(labels)}."
    if multi_label:
        updated_system_prompt = f"{updated_system_prompt}. Only apply relevant labels. Applying less labels is better than applying too many labels."
    labeller_generator = get_labeller_generator(
        system_prompt=updated_system_prompt,
        labels=labels,
        multi_label=multi_label,
    )
    total_steps: int = num_rows * 2
    batch_size = DEFAULT_BATCH_SIZE

    # create text classification data
    n_processed = 0
    textcat_results = []
    while n_processed < num_rows:
        progress(
            2 * 0.5 * n_processed / num_rows,
            total=total_steps,
            desc="(1/2) Generating dataset",
        )
        remaining_rows = num_rows - n_processed
        batch_size = min(batch_size, remaining_rows)
        inputs = []
        for _ in range(batch_size):
            if multi_label:
                num_labels = len(labels)
                k = int(
                    random.betavariate(alpha=(num_labels - 1), beta=num_labels)
                    * num_labels
                )
            else:
                k = 1

            sampled_labels = random.sample(labels, min(k, len(labels)))
            random.shuffle(sampled_labels)
            inputs.append(
                {
                    "task": f"{system_prompt}. The text represents the following categories: {', '.join(sampled_labels)}"
                }
            )
        batch = list(textcat_generator.process(inputs=inputs))
        textcat_results.extend(batch[0])
        n_processed += batch_size
    for result in textcat_results:
        result["text"] = result["input_text"]

    # label text classification data
    progress(2 * 0.5, desc="(2/2) Labeling dataset")
    n_processed = 0
    labeller_results = []
    while n_processed < num_rows:
        progress(
            0.5 + 0.5 * n_processed / num_rows,
            total=total_steps,
            desc="(2/2) Labeling dataset",
        )
        batch = textcat_results[n_processed : n_processed + batch_size]
        labels_batch = list(labeller_generator.process(inputs=batch))
        labeller_results.extend(labels_batch[0])
        n_processed += batch_size
    progress(
        1,
        total=total_steps,
        desc="(2/2) Creating dataset",
    )

    # create final dataset
    distiset_results = []
    for result in labeller_results:
        record = {key: result[key] for key in ["labels", "text"] if key in result}
        distiset_results.append(record)

    dataframe = pd.DataFrame(distiset_results)
    if multi_label:
        dataframe["labels"] = dataframe["labels"].apply(
            lambda x: list(
                set(
                    [
                        label.lower().strip()
                        for label in x
                        if label is not None and label.lower().strip() in labels
                    ]
                )
            )
        )
        dataframe = dataframe[dataframe["labels"].notna()]
    else:
        dataframe = dataframe.rename(columns={"labels": "label"})
        dataframe["label"] = dataframe["label"].apply(
            lambda x: x.lower().strip()
            if x and x.lower().strip() in labels
            else random.choice(labels)
        )
    dataframe = dataframe[dataframe["text"].notna()]

    progress(1.0, desc="Dataset created")
    return dataframe


def push_dataset_to_hub(
    dataframe: pd.DataFrame,
    org_name: str,
    repo_name: str,
    multi_label: bool = False,
    labels: List[str] = None,
    oauth_token: Union[gr.OAuthToken, None] = None,
    private: bool = False,
    pipeline_code: str = "",
    progress=gr.Progress(),
):
    progress(0.0, desc="Validating")
    repo_id = validate_push_to_hub(org_name, repo_name)
    progress(0.3, desc="Preprocessing")
    labels = get_preprocess_labels(labels)
    progress(0.7, desc="Creating dataset")
    if multi_label:
        features = Features(
            {
                "text": Value("string"),
                "labels": Sequence(feature=ClassLabel(names=labels)),
            }
        )
    else:
        features = Features(
            {"text": Value("string"), "label": ClassLabel(names=labels)}
        )
    dataset = Dataset.from_pandas(dataframe, features=features)
    dataset = combine_datasets(repo_id, dataset)
    distiset = Distiset({"default": dataset})
    progress(0.9, desc="Pushing dataset")
    distiset.push_to_hub(
        repo_id=repo_id,
        private=private,
        include_script=False,
        token=oauth_token.token,
        create_pr=False,
    )
    push_pipeline_code_to_hub(pipeline_code, org_name, repo_name, oauth_token)
    progress(1.0, desc="Dataset pushed")


def push_dataset(
    org_name: str,
    repo_name: str,
    system_prompt: str,
    difficulty: str,
    clarity: str,
    multi_label: int = 1,
    num_rows: int = 10,
    labels: List[str] = None,
    private: bool = False,
    temperature: float = 0.8,
    pipeline_code: str = "",
    oauth_token: Union[gr.OAuthToken, None] = None,
    progress=gr.Progress(),
) -> pd.DataFrame:
    dataframe = generate_dataset(
        system_prompt=system_prompt,
        difficulty=difficulty,
        clarity=clarity,
        multi_label=multi_label,
        labels=labels,
        num_rows=num_rows,
        temperature=temperature,
    )
    push_dataset_to_hub(
        dataframe,
        org_name,
        repo_name,
        multi_label,
        labels,
        oauth_token,
        private,
        pipeline_code,
    )

    dataframe = dataframe[
        (dataframe["text"].str.strip() != "") & (dataframe["text"].notna())
    ]
    try:
        progress(0.1, desc="Setting up user and workspace")
        hf_user = HfApi().whoami(token=oauth_token.token)["name"]
        client = get_argilla_client()
        if client is None:
            return ""
        labels = get_preprocess_labels(labels)
        settings = rg.Settings(
            fields=[
                rg.TextField(
                    name="text",
                    description="The text classification data",
                    title="Text",
                ),
            ],
            questions=[
                (
                    rg.MultiLabelQuestion(
                        name="labels",
                        title="Labels",
                        description="The labels of the conversation",
                        labels=labels,
                    )
                    if multi_label
                    else rg.LabelQuestion(
                        name="label",
                        title="Label",
                        description="The label of the text",
                        labels=labels,
                    )
                ),
            ],
            metadata=[
                rg.IntegerMetadataProperty(name="text_length", title="Text Length"),
            ],
            vectors=[
                rg.VectorField(
                    name="text_embeddings",
                    dimensions=get_sentence_embedding_dimensions(),
                )
            ],
            guidelines="Please review the text and provide or correct the label where needed.",
        )

        dataframe["text_length"] = dataframe["text"].apply(len)
        dataframe["text_embeddings"] = get_embeddings(dataframe["text"].to_list())

        progress(0.5, desc="Creating dataset")
        rg_dataset = client.datasets(name=repo_name, workspace=hf_user)
        if rg_dataset is None:
            rg_dataset = rg.Dataset(
                name=repo_name,
                workspace=hf_user,
                settings=settings,
                client=client,
            )
            rg_dataset = rg_dataset.create()
        progress(0.7, desc="Pushing dataset")
        hf_dataset = Dataset.from_pandas(dataframe)
        records = [
            rg.Record(
                fields={
                    "text": sample["text"],
                },
                metadata={"text_length": sample["text_length"]},
                vectors={"text_embeddings": sample["text_embeddings"]},
                suggestions=(
                    [
                        rg.Suggestion(
                            question_name="labels" if multi_label else "label",
                            value=(
                                sample["labels"] if multi_label else sample["label"]
                            ),
                        )
                    ]
                    if (
                        (not multi_label and sample["label"] in labels)
                        or (
                            multi_label
                            and all(label in labels for label in sample["labels"])
                        )
                    )
                    else []
                ),
            )
            for sample in hf_dataset
        ]
        rg_dataset.records.log(records=records)
        progress(1.0, desc="Dataset pushed")
    except Exception as e:
        raise gr.Error(f"Error pushing dataset to Argilla: {e}")
    return ""


def validate_input_labels(labels):
    if not labels or len(labels) < 2:
        raise gr.Error(
            f"Please select at least 2 labels to classify your text. You selected {len(labels) if labels else 0}."
        )
    return labels


def show_pipeline_code_visibility():
    return {pipeline_code_ui: gr.Accordion(visible=True)}


def hide_pipeline_code_visibility():
    return {pipeline_code_ui: gr.Accordion(visible=False)}


######################
# Gradio UI
######################


with gr.Blocks() as app:
    with gr.Column() as main_ui:
        gr.Markdown("## 1. Describe the dataset you want")
        with gr.Row():
            with gr.Column(scale=2):
                dataset_description = gr.Textbox(
                    label="Dataset description",
                    placeholder="Give a precise description of your desired dataset.",
                )
                with gr.Row():
                    clear_btn_part = gr.Button(
                        "Clear",
                        variant="secondary",
                    )
                    load_btn = gr.Button(
                        "Create",
                        variant="primary",
                    )
            with gr.Column(scale=3):
                examples = gr.Examples(
                    examples=DEFAULT_DATASET_DESCRIPTIONS,
                    inputs=[dataset_description],
                    cache_examples=False,
                    label="Examples",
                )

        gr.HTML("<hr>")
        gr.Markdown("## 2. Configure your dataset")
        with gr.Row(equal_height=True):
            with gr.Row(equal_height=False):
                with gr.Column(scale=2):
                    system_prompt = gr.Textbox(
                        label="System prompt",
                        placeholder="You are a helpful assistant.",
                        visible=True,
                    )
                    labels = gr.Dropdown(
                        choices=[],
                        allow_custom_value=True,
                        interactive=True,
                        label="Labels",
                        multiselect=True,
                        info="Add the labels to classify the text.",
                    )
                    multi_label = gr.Checkbox(
                        label="Multi-label",
                        value=False,
                        interactive=True,
                        info="If checked, the text will be classified into multiple labels.",
                    )
                    clarity = gr.Dropdown(
                        choices=[
                            ("Clear", "clear"),
                            (
                                "Understandable",
                                "understandable with some effort",
                            ),
                            ("Ambiguous", "ambiguous"),
                            ("Mixed", "mixed"),
                        ],
                        value="mixed",
                        label="Clarity",
                        info="Set how easily the correct label or labels can be identified.",
                        interactive=True,
                    )
                    difficulty = gr.Dropdown(
                        choices=[
                            ("High School", "high school"),
                            ("College", "college"),
                            ("PhD", "PhD"),
                            ("Mixed", "mixed"),
                        ],
                        value="high school",
                        label="Difficulty",
                        info="Select the comprehension level for the text. Ensure it matches the task context.",
                        interactive=True,
                    )
                    with gr.Row():
                        clear_btn_full = gr.Button("Clear", variant="secondary")
                        btn_apply_to_sample_dataset = gr.Button(
                            "Save", variant="primary"
                        )
                with gr.Column(scale=3):
                    dataframe = _get_dataframe()

        gr.HTML("<hr>")
        gr.Markdown("## 3. Generate your dataset")
        with gr.Row(equal_height=False):
            with gr.Column(scale=2):
                org_name = get_org_dropdown()
                repo_name = gr.Textbox(
                    label="Repo name",
                    placeholder="dataset_name",
                    value=f"my-distiset-{str(uuid.uuid4())[:8]}",
                    interactive=True,
                )
                num_rows = gr.Number(
                    label="Number of rows",
                    value=10,
                    interactive=True,
                    scale=1,
                )
                temperature = gr.Slider(
                    label="Temperature",
                    minimum=0.1,
                    maximum=1,
                    value=0.8,
                    step=0.1,
                    interactive=True,
                )
                private = gr.Checkbox(
                    label="Private dataset",
                    value=False,
                    interactive=True,
                    scale=1,
                )
                btn_push_to_hub = gr.Button("Push to Hub", variant="primary", scale=2)
            with gr.Column(scale=3):
                success_message = gr.Markdown(
                    visible=True,
                    min_height=100,  # don't remove this otherwise progress is not visible
                )
                with gr.Accordion(
                    "Customize your pipeline with distilabel",
                    open=False,
                    visible=False,
                ) as pipeline_code_ui:
                    code = generate_pipeline_code(
                        system_prompt.value,
                        difficulty=difficulty.value,
                        clarity=clarity.value,
                        labels=labels.value,
                        num_labels=len(labels.value) if multi_label.value else 1,
                        num_rows=num_rows.value,
                        temperature=temperature.value,
                    )
                    pipeline_code = gr.Code(
                        value=code,
                        language="python",
                        label="Distilabel Pipeline Code",
                    )

    load_btn.click(
        fn=generate_system_prompt,
        inputs=[dataset_description],
        outputs=[system_prompt, labels],
        show_progress=True,
    ).then(
        fn=generate_sample_dataset,
        inputs=[system_prompt, difficulty, clarity, labels, multi_label],
        outputs=[dataframe],
        show_progress=True,
    )

    btn_apply_to_sample_dataset.click(
        fn=generate_sample_dataset,
        inputs=[system_prompt, difficulty, clarity, labels, multi_label],
        outputs=[dataframe],
        show_progress=True,
    )

    btn_push_to_hub.click(
        fn=validate_argilla_user_workspace_dataset,
        inputs=[repo_name],
        outputs=[success_message],
        show_progress=True,
    ).then(
        fn=validate_push_to_hub,
        inputs=[org_name, repo_name],
        outputs=[success_message],
        show_progress=True,
    ).success(
        fn=hide_success_message,
        outputs=[success_message],
        show_progress=True,
    ).success(
        fn=hide_pipeline_code_visibility,
        inputs=[],
        outputs=[pipeline_code_ui],
    ).success(
        fn=push_dataset,
        inputs=[
            org_name,
            repo_name,
            system_prompt,
            difficulty,
            clarity,
            multi_label,
            num_rows,
            labels,
            private,
            temperature,
            pipeline_code,
        ],
        outputs=[success_message],
        show_progress=True,
    ).success(
        fn=show_success_message,
        inputs=[org_name, repo_name],
        outputs=[success_message],
    ).success(
        fn=generate_pipeline_code,
        inputs=[
            system_prompt,
            difficulty,
            clarity,
            labels,
            multi_label,
            num_rows,
            temperature,
        ],
        outputs=[pipeline_code],
    ).success(
        fn=show_pipeline_code_visibility,
        inputs=[],
        outputs=[pipeline_code_ui],
    )

    gr.on(
        triggers=[clear_btn_part.click, clear_btn_full.click],
        fn=lambda _: (
            "",
            "",
            [],
            _get_dataframe(),
        ),
        inputs=[dataframe],
        outputs=[dataset_description, system_prompt, labels, dataframe],
    )

    app.load(fn=swap_visibility, outputs=main_ui)
    app.load(fn=get_org_dropdown, outputs=[org_name])