File size: 13,781 Bytes
047944d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d55d8ad
 
047944d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# example 1 
from textwrap3 import wrap
import torch
import random
import numpy as np
import nltk
nltk.download('punkt')
nltk.download('brown')
nltk.download('wordnet')
from nltk.corpus import wordnet as wn
from nltk.tokenize import sent_tokenize
nltk.download('stopwords')
from nltk.corpus import stopwords
import string
import pke
import traceback
from flashtext import KeywordProcessor
from similarity.normalized_levenshtein import NormalizedLevenshtein
normalized_levenshtein = NormalizedLevenshtein()
from collections import OrderedDict
from sklearn.metrics.pairwise import cosine_similarity
import nltk
nltk.download('omw-1.4')
import gradio as gr
question_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_squad_v1')
question_tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_squad_v1')
question_model = question_model.to(device)

# filter keywords 
wget https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz
tar -xvf  s2v_reddit_2015_md.tar.gz
import numpy as np
from sense2vec import Sense2Vec
s2v = Sense2Vec().from_disk('s2v_old')
from sentence_transformers import SentenceTransformer


text = """Elon Musk has shown again he can influence the digital currency market with just his tweets. After saying that his electric vehicle-making company
Tesla will not accept payments in Bitcoin because of environmental concerns, he tweeted that he was working with developers of Dogecoin to improve
system transaction efficiency. Following the two distinct statements from him, the world's largest cryptocurrency hit a two-month low, while Dogecoin
rallied by about 20 percent. The SpaceX CEO has in recent months often tweeted in support of Dogecoin, but rarely for Bitcoin.  In a recent tweet,
Musk put out a statement from Tesla that it was “concerned” about the rapidly increasing use of fossil fuels for Bitcoin (price in India) mining and
transaction, and hence was suspending vehicle purchases using the cryptocurrency.  A day later he again tweeted saying, “To be clear, I strongly
believe in crypto, but it can't drive a massive increase in fossil fuel use, especially coal”.  It triggered a downward spiral for Bitcoin value but
the cryptocurrency has stabilised since.   A number of Twitter users welcomed Musk's statement. One of them said it's time people started realising
that Dogecoin “is here to stay” and another referred to Musk's previous assertion that crypto could become the world's future currency."""

for wrp in wrap(text, 150):
  print (wrp)
print ("\n")


# summerization with t5
from transformers import T5ForConditionalGeneration,T5Tokenizer
summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')
summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_model = summary_model.to(device)



def set_seed(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

set_seed(42)



def postprocesstext (content):
  final=""
  for sent in sent_tokenize(content):
    sent = sent.capitalize()
    final = final +" "+sent
  return final


def summarizer(text,model,tokenizer):
  text = text.strip().replace("\n"," ")
  text = "summarize: "+text
  # print (text)
  max_len = 512
  encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)

  input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]

  outs = model.generate(input_ids=input_ids,
                                  attention_mask=attention_mask,
                                  early_stopping=True,
                                  num_beams=3,
                                  num_return_sequences=1,
                                  no_repeat_ngram_size=2,
                                  min_length = 75,
                                  max_length=300)


  dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
  summary = dec[0]
  summary = postprocesstext(summary)
  summary= summary.strip()

  return summary


summarized_text = summarizer(text,summary_model,summary_tokenizer)


print ("\noriginal Text >>")
for wrp in wrap(text, 150):
  print (wrp)
print ("\n")
print ("Summarized Text >>")
for wrp in wrap(summarized_text, 150):
  print (wrp)
print ("\n")



# answer span extraction


def get_nouns_multipartite(content):
    out=[]
    try:
        extractor = pke.unsupervised.MultipartiteRank()
        extractor.load_document(input=content,language='en')
        #    not contain punctuation marks or stopwords as candidates.
        pos = {'PROPN','NOUN'}
        #pos = {'PROPN','NOUN'}
        stoplist = list(string.punctuation)
        stoplist += ['-lrb-', '-rrb-', '-lcb-', '-rcb-', '-lsb-', '-rsb-']
        stoplist += stopwords.words('english')
        # extractor.candidate_selection(pos=pos, stoplist=stoplist)
        extractor.candidate_selection(pos=pos)
        # 4. build the Multipartite graph and rank candidates using random walk,
        #    alpha controls the weight adjustment mechanism, see TopicRank for
        #    threshold/method parameters.
        extractor.candidate_weighting(alpha=1.1,
                                      threshold=0.75,
                                      method='average')
        keyphrases = extractor.get_n_best(n=15)
        

        for val in keyphrases:
            out.append(val[0])
    except:
        out = []
        traceback.print_exc()

    return out



def get_keywords(originaltext,summarytext):
  keywords = get_nouns_multipartite(originaltext)
  print ("keywords unsummarized: ",keywords)
  keyword_processor = KeywordProcessor()
  for keyword in keywords:
    keyword_processor.add_keyword(keyword)

  keywords_found = keyword_processor.extract_keywords(summarytext)
  keywords_found = list(set(keywords_found))
  print ("keywords_found in summarized: ",keywords_found)

  important_keywords =[]
  for keyword in keywords:
    if keyword in keywords_found:
      important_keywords.append(keyword)

  return important_keywords[:10]


imp_keywords = get_keywords(text,summarized_text)
print (imp_keywords)



def get_question(context,answer,model,tokenizer):
  text = "context: {} answer: {}".format(context,answer)
  encoding = tokenizer.encode_plus(text,max_length=384, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
  input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]

  outs = model.generate(input_ids=input_ids,
                                  attention_mask=attention_mask,
                                  early_stopping=True,
                                  num_beams=5,
                                  num_return_sequences=1,
                                  no_repeat_ngram_size=2,
                                  max_length=72)


  dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]


  Question = dec[0].replace("question:","")
  Question= Question.strip()
  return Question



for wrp in wrap(summarized_text, 150):
  print (wrp)
print ("\n")

for answer in imp_keywords:
  ques = get_question(summarized_text,answer,question_model,question_tokenizer)
  print (ques)
  print (answer.capitalize())
  print ("\n")




# filter keywords 

# paraphrase-distilroberta-base-v1
sentence_transformer_model = SentenceTransformer('msmarco-distilbert-base-v3')





def filter_same_sense_words(original,wordlist):
  filtered_words=[]
  base_sense =original.split('|')[1] 
  print (base_sense)
  for eachword in wordlist:
    if eachword[0].split('|')[1] == base_sense:
      filtered_words.append(eachword[0].split('|')[0].replace("_", " ").title().strip())
  return filtered_words

def get_highest_similarity_score(wordlist,wrd):
  score=[]
  for each in wordlist:
    score.append(normalized_levenshtein.similarity(each.lower(),wrd.lower()))
  return max(score)

def sense2vec_get_words(word,s2v,topn,question):
    output = []
    print ("word ",word)
    try:
      sense = s2v.get_best_sense(word, senses= ["NOUN", "PERSON","PRODUCT","LOC","ORG","EVENT","NORP","WORK OF ART","FAC","GPE","NUM","FACILITY"])
      most_similar = s2v.most_similar(sense, n=topn)
      # print (most_similar)
      output = filter_same_sense_words(sense,most_similar)
      print ("Similar ",output)
    except:
      output =[]

    threshold = 0.6
    final=[word]
    checklist =question.split()
    for x in output:
      if get_highest_similarity_score(final,x)<threshold and x not in final and x not in checklist:
        final.append(x)
    
    return final[1:]

def mmr(doc_embedding, word_embeddings, words, top_n, lambda_param):

    # Extract similarity within words, and between words and the document
    word_doc_similarity = cosine_similarity(word_embeddings, doc_embedding)
    word_similarity = cosine_similarity(word_embeddings)

    # Initialize candidates and already choose best keyword/keyphrase
    keywords_idx = [np.argmax(word_doc_similarity)]
    candidates_idx = [i for i in range(len(words)) if i != keywords_idx[0]]

    for _ in range(top_n - 1):
        # Extract similarities within candidates and
        # between candidates and selected keywords/phrases
        candidate_similarities = word_doc_similarity[candidates_idx, :]
        target_similarities = np.max(word_similarity[candidates_idx][:, keywords_idx], axis=1)

        # Calculate MMR
        mmr = (lambda_param) * candidate_similarities - (1-lambda_param) * target_similarities.reshape(-1, 1)
        mmr_idx = candidates_idx[np.argmax(mmr)]

        # Update keywords & candidates
        keywords_idx.append(mmr_idx)
        candidates_idx.remove(mmr_idx)

    return [words[idx] for idx in keywords_idx]

def get_distractors_wordnet(word):
    distractors=[]
    try:
      syn = wn.synsets(word,'n')[0]
      
      word= word.lower()
      orig_word = word
      if len(word.split())>0:
          word = word.replace(" ","_")
      hypernym = syn.hypernyms()
      if len(hypernym) == 0: 
          return distractors
      for item in hypernym[0].hyponyms():
          name = item.lemmas()[0].name()
          #print ("name ",name, " word",orig_word)
          if name == orig_word:
              continue
          name = name.replace("_"," ")
          name = " ".join(w.capitalize() for w in name.split())
          if name is not None and name not in distractors:
              distractors.append(name)
    except:
      print ("Wordnet distractors not found")
    return distractors

def get_distractors (word,origsentence,sense2vecmodel,sentencemodel,top_n,lambdaval):
  distractors = sense2vec_get_words(word,sense2vecmodel,top_n,origsentence)
  print ("distractors ",distractors)
  if len(distractors) ==0:
    return distractors
  distractors_new = [word.capitalize()]
  distractors_new.extend(distractors)
  # print ("distractors_new .. ",distractors_new)

  embedding_sentence = origsentence+ " "+word.capitalize()
  # embedding_sentence = word
  keyword_embedding = sentencemodel.encode([embedding_sentence])
  distractor_embeddings = sentencemodel.encode(distractors_new)

  # filtered_keywords = mmr(keyword_embedding, distractor_embeddings,distractors,4,0.7)
  max_keywords = min(len(distractors_new),5)
  filtered_keywords = mmr(keyword_embedding, distractor_embeddings,distractors_new,max_keywords,lambdaval)
  # filtered_keywords = filtered_keywords[1:]
  final = [word.capitalize()]
  for wrd in filtered_keywords:
    if wrd.lower() !=word.lower():
      final.append(wrd.capitalize())
  final = final[1:]
  return final

sent = "What cryptocurrency did Musk rarely tweet about?"
keyword = "Bitcoin"

# sent = "What did Musk say he was working with to improve system transaction efficiency?"
# keyword= "Dogecoin"


# sent = "What company did Musk say would not accept bitcoin payments?"
# keyword= "Tesla"


# sent = "What has Musk often tweeted in support of?"
# keyword = "Cryptocurrency"

print (get_distractors(keyword,sent,s2v,sentence_transformer_model,40,0.2))




context = gr.inputs.Textbox(lines=10, placeholder="Enter paragraph/content here...")
output = gr.outputs.HTML(  label="Question and Answers")
radiobutton = gr.inputs.Radio(["Wordnet", "Sense2Vec"])

def generate_question(context,radiobutton):
  summary_text = summarizer(context,summary_model,summary_tokenizer)
  for wrp in wrap(summary_text, 100):
    print (wrp)
  # np = getnounphrases(summary_text,sentence_transformer_model,3)
  np =  get_keywords(context,summary_text)
  print ("\n\nNoun phrases",np)
  output=""
  for answer in np:
    ques = get_question(summary_text,answer,question_model,question_tokenizer)
    if radiobutton=="Wordnet":
      distractors = get_distractors_wordnet(answer)
    else:
      distractors = get_distractors(answer.capitalize(),ques,s2v,sentence_transformer_model,40,0.2)
    # output= output + ques + "\n" + "Ans: "+answer.capitalize() + "\n\n"
    output = output + "<b style='color:blue;'>" + ques + "</b>"
    output = output + "<br>"
    output = output + "<b style='color:green;'>" + "Ans: " +answer.capitalize()+  "</b>"+"<br>"
    if len(distractors)>0:
      for distractor in distractors[:4]:
        output = output + "<b style='color:brown;'>" + distractor+  "</b>"+"<br>"
    output = output + "<br>"

  summary ="Summary: "+ summary_text
  for answer in np:
    summary = summary.replace(answer,"<b>"+answer+"</b>" + "<br>")
    summary = summary.replace(answer.capitalize(),"<b>"+answer.capitalize()+"</b>")
  output = output + "<p>"+summary+"</p>"
  output = output + "<br>"
  return output


iface = gr.Interface(
  fn=generate_question, 
  inputs=[context,radiobutton], 
  outputs=output)
iface.launch(debug=True)