File size: 13,781 Bytes
047944d d55d8ad 047944d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# example 1
from textwrap3 import wrap
import torch
import random
import numpy as np
import nltk
nltk.download('punkt')
nltk.download('brown')
nltk.download('wordnet')
from nltk.corpus import wordnet as wn
from nltk.tokenize import sent_tokenize
nltk.download('stopwords')
from nltk.corpus import stopwords
import string
import pke
import traceback
from flashtext import KeywordProcessor
from similarity.normalized_levenshtein import NormalizedLevenshtein
normalized_levenshtein = NormalizedLevenshtein()
from collections import OrderedDict
from sklearn.metrics.pairwise import cosine_similarity
import nltk
nltk.download('omw-1.4')
import gradio as gr
question_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_squad_v1')
question_tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_squad_v1')
question_model = question_model.to(device)
# filter keywords
wget https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz
tar -xvf s2v_reddit_2015_md.tar.gz
import numpy as np
from sense2vec import Sense2Vec
s2v = Sense2Vec().from_disk('s2v_old')
from sentence_transformers import SentenceTransformer
text = """Elon Musk has shown again he can influence the digital currency market with just his tweets. After saying that his electric vehicle-making company
Tesla will not accept payments in Bitcoin because of environmental concerns, he tweeted that he was working with developers of Dogecoin to improve
system transaction efficiency. Following the two distinct statements from him, the world's largest cryptocurrency hit a two-month low, while Dogecoin
rallied by about 20 percent. The SpaceX CEO has in recent months often tweeted in support of Dogecoin, but rarely for Bitcoin. In a recent tweet,
Musk put out a statement from Tesla that it was “concerned” about the rapidly increasing use of fossil fuels for Bitcoin (price in India) mining and
transaction, and hence was suspending vehicle purchases using the cryptocurrency. A day later he again tweeted saying, “To be clear, I strongly
believe in crypto, but it can't drive a massive increase in fossil fuel use, especially coal”. It triggered a downward spiral for Bitcoin value but
the cryptocurrency has stabilised since. A number of Twitter users welcomed Musk's statement. One of them said it's time people started realising
that Dogecoin “is here to stay” and another referred to Musk's previous assertion that crypto could become the world's future currency."""
for wrp in wrap(text, 150):
print (wrp)
print ("\n")
# summerization with t5
from transformers import T5ForConditionalGeneration,T5Tokenizer
summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')
summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_model = summary_model.to(device)
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_seed(42)
def postprocesstext (content):
final=""
for sent in sent_tokenize(content):
sent = sent.capitalize()
final = final +" "+sent
return final
def summarizer(text,model,tokenizer):
text = text.strip().replace("\n"," ")
text = "summarize: "+text
# print (text)
max_len = 512
encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
outs = model.generate(input_ids=input_ids,
attention_mask=attention_mask,
early_stopping=True,
num_beams=3,
num_return_sequences=1,
no_repeat_ngram_size=2,
min_length = 75,
max_length=300)
dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
summary = dec[0]
summary = postprocesstext(summary)
summary= summary.strip()
return summary
summarized_text = summarizer(text,summary_model,summary_tokenizer)
print ("\noriginal Text >>")
for wrp in wrap(text, 150):
print (wrp)
print ("\n")
print ("Summarized Text >>")
for wrp in wrap(summarized_text, 150):
print (wrp)
print ("\n")
# answer span extraction
def get_nouns_multipartite(content):
out=[]
try:
extractor = pke.unsupervised.MultipartiteRank()
extractor.load_document(input=content,language='en')
# not contain punctuation marks or stopwords as candidates.
pos = {'PROPN','NOUN'}
#pos = {'PROPN','NOUN'}
stoplist = list(string.punctuation)
stoplist += ['-lrb-', '-rrb-', '-lcb-', '-rcb-', '-lsb-', '-rsb-']
stoplist += stopwords.words('english')
# extractor.candidate_selection(pos=pos, stoplist=stoplist)
extractor.candidate_selection(pos=pos)
# 4. build the Multipartite graph and rank candidates using random walk,
# alpha controls the weight adjustment mechanism, see TopicRank for
# threshold/method parameters.
extractor.candidate_weighting(alpha=1.1,
threshold=0.75,
method='average')
keyphrases = extractor.get_n_best(n=15)
for val in keyphrases:
out.append(val[0])
except:
out = []
traceback.print_exc()
return out
def get_keywords(originaltext,summarytext):
keywords = get_nouns_multipartite(originaltext)
print ("keywords unsummarized: ",keywords)
keyword_processor = KeywordProcessor()
for keyword in keywords:
keyword_processor.add_keyword(keyword)
keywords_found = keyword_processor.extract_keywords(summarytext)
keywords_found = list(set(keywords_found))
print ("keywords_found in summarized: ",keywords_found)
important_keywords =[]
for keyword in keywords:
if keyword in keywords_found:
important_keywords.append(keyword)
return important_keywords[:10]
imp_keywords = get_keywords(text,summarized_text)
print (imp_keywords)
def get_question(context,answer,model,tokenizer):
text = "context: {} answer: {}".format(context,answer)
encoding = tokenizer.encode_plus(text,max_length=384, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
outs = model.generate(input_ids=input_ids,
attention_mask=attention_mask,
early_stopping=True,
num_beams=5,
num_return_sequences=1,
no_repeat_ngram_size=2,
max_length=72)
dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
Question = dec[0].replace("question:","")
Question= Question.strip()
return Question
for wrp in wrap(summarized_text, 150):
print (wrp)
print ("\n")
for answer in imp_keywords:
ques = get_question(summarized_text,answer,question_model,question_tokenizer)
print (ques)
print (answer.capitalize())
print ("\n")
# filter keywords
# paraphrase-distilroberta-base-v1
sentence_transformer_model = SentenceTransformer('msmarco-distilbert-base-v3')
def filter_same_sense_words(original,wordlist):
filtered_words=[]
base_sense =original.split('|')[1]
print (base_sense)
for eachword in wordlist:
if eachword[0].split('|')[1] == base_sense:
filtered_words.append(eachword[0].split('|')[0].replace("_", " ").title().strip())
return filtered_words
def get_highest_similarity_score(wordlist,wrd):
score=[]
for each in wordlist:
score.append(normalized_levenshtein.similarity(each.lower(),wrd.lower()))
return max(score)
def sense2vec_get_words(word,s2v,topn,question):
output = []
print ("word ",word)
try:
sense = s2v.get_best_sense(word, senses= ["NOUN", "PERSON","PRODUCT","LOC","ORG","EVENT","NORP","WORK OF ART","FAC","GPE","NUM","FACILITY"])
most_similar = s2v.most_similar(sense, n=topn)
# print (most_similar)
output = filter_same_sense_words(sense,most_similar)
print ("Similar ",output)
except:
output =[]
threshold = 0.6
final=[word]
checklist =question.split()
for x in output:
if get_highest_similarity_score(final,x)<threshold and x not in final and x not in checklist:
final.append(x)
return final[1:]
def mmr(doc_embedding, word_embeddings, words, top_n, lambda_param):
# Extract similarity within words, and between words and the document
word_doc_similarity = cosine_similarity(word_embeddings, doc_embedding)
word_similarity = cosine_similarity(word_embeddings)
# Initialize candidates and already choose best keyword/keyphrase
keywords_idx = [np.argmax(word_doc_similarity)]
candidates_idx = [i for i in range(len(words)) if i != keywords_idx[0]]
for _ in range(top_n - 1):
# Extract similarities within candidates and
# between candidates and selected keywords/phrases
candidate_similarities = word_doc_similarity[candidates_idx, :]
target_similarities = np.max(word_similarity[candidates_idx][:, keywords_idx], axis=1)
# Calculate MMR
mmr = (lambda_param) * candidate_similarities - (1-lambda_param) * target_similarities.reshape(-1, 1)
mmr_idx = candidates_idx[np.argmax(mmr)]
# Update keywords & candidates
keywords_idx.append(mmr_idx)
candidates_idx.remove(mmr_idx)
return [words[idx] for idx in keywords_idx]
def get_distractors_wordnet(word):
distractors=[]
try:
syn = wn.synsets(word,'n')[0]
word= word.lower()
orig_word = word
if len(word.split())>0:
word = word.replace(" ","_")
hypernym = syn.hypernyms()
if len(hypernym) == 0:
return distractors
for item in hypernym[0].hyponyms():
name = item.lemmas()[0].name()
#print ("name ",name, " word",orig_word)
if name == orig_word:
continue
name = name.replace("_"," ")
name = " ".join(w.capitalize() for w in name.split())
if name is not None and name not in distractors:
distractors.append(name)
except:
print ("Wordnet distractors not found")
return distractors
def get_distractors (word,origsentence,sense2vecmodel,sentencemodel,top_n,lambdaval):
distractors = sense2vec_get_words(word,sense2vecmodel,top_n,origsentence)
print ("distractors ",distractors)
if len(distractors) ==0:
return distractors
distractors_new = [word.capitalize()]
distractors_new.extend(distractors)
# print ("distractors_new .. ",distractors_new)
embedding_sentence = origsentence+ " "+word.capitalize()
# embedding_sentence = word
keyword_embedding = sentencemodel.encode([embedding_sentence])
distractor_embeddings = sentencemodel.encode(distractors_new)
# filtered_keywords = mmr(keyword_embedding, distractor_embeddings,distractors,4,0.7)
max_keywords = min(len(distractors_new),5)
filtered_keywords = mmr(keyword_embedding, distractor_embeddings,distractors_new,max_keywords,lambdaval)
# filtered_keywords = filtered_keywords[1:]
final = [word.capitalize()]
for wrd in filtered_keywords:
if wrd.lower() !=word.lower():
final.append(wrd.capitalize())
final = final[1:]
return final
sent = "What cryptocurrency did Musk rarely tweet about?"
keyword = "Bitcoin"
# sent = "What did Musk say he was working with to improve system transaction efficiency?"
# keyword= "Dogecoin"
# sent = "What company did Musk say would not accept bitcoin payments?"
# keyword= "Tesla"
# sent = "What has Musk often tweeted in support of?"
# keyword = "Cryptocurrency"
print (get_distractors(keyword,sent,s2v,sentence_transformer_model,40,0.2))
context = gr.inputs.Textbox(lines=10, placeholder="Enter paragraph/content here...")
output = gr.outputs.HTML( label="Question and Answers")
radiobutton = gr.inputs.Radio(["Wordnet", "Sense2Vec"])
def generate_question(context,radiobutton):
summary_text = summarizer(context,summary_model,summary_tokenizer)
for wrp in wrap(summary_text, 100):
print (wrp)
# np = getnounphrases(summary_text,sentence_transformer_model,3)
np = get_keywords(context,summary_text)
print ("\n\nNoun phrases",np)
output=""
for answer in np:
ques = get_question(summary_text,answer,question_model,question_tokenizer)
if radiobutton=="Wordnet":
distractors = get_distractors_wordnet(answer)
else:
distractors = get_distractors(answer.capitalize(),ques,s2v,sentence_transformer_model,40,0.2)
# output= output + ques + "\n" + "Ans: "+answer.capitalize() + "\n\n"
output = output + "<b style='color:blue;'>" + ques + "</b>"
output = output + "<br>"
output = output + "<b style='color:green;'>" + "Ans: " +answer.capitalize()+ "</b>"+"<br>"
if len(distractors)>0:
for distractor in distractors[:4]:
output = output + "<b style='color:brown;'>" + distractor+ "</b>"+"<br>"
output = output + "<br>"
summary ="Summary: "+ summary_text
for answer in np:
summary = summary.replace(answer,"<b>"+answer+"</b>" + "<br>")
summary = summary.replace(answer.capitalize(),"<b>"+answer.capitalize()+"</b>")
output = output + "<p>"+summary+"</p>"
output = output + "<br>"
return output
iface = gr.Interface(
fn=generate_question,
inputs=[context,radiobutton],
outputs=output)
iface.launch(debug=True) |