qsaheeb commited on
Commit
6d67ef6
·
1 Parent(s): 58c5774

Addsome changes 2

Browse files
Files changed (4) hide show
  1. app.py +1 -1
  2. embeddings.py +2 -2
  3. preprocess.py +1 -4
  4. recommender.py +1 -1
app.py CHANGED
@@ -5,7 +5,7 @@ import torch
5
  from sentence_transformers import SentenceTransformer, util, CrossEncoder
6
  from recommender import BookRecommender
7
  # Load book dataset
8
- df = pd.read_csv("/data/books_summary_cleaned.csv")
9
 
10
  # Load precomputed SBERT embeddings
11
  with open("model/sbert_embeddings2.pkl", "rb") as f:
 
5
  from sentence_transformers import SentenceTransformer, util, CrossEncoder
6
  from recommender import BookRecommender
7
  # Load book dataset
8
+ df = pd.read_csv("data/books_summary_cleaned.csv")
9
 
10
  # Load precomputed SBERT embeddings
11
  with open("model/sbert_embeddings2.pkl", "rb") as f:
embeddings.py CHANGED
@@ -3,7 +3,7 @@ from preprocess import preprocess_books
3
  import pickle
4
  import numpy as np
5
 
6
- def extract_sbert_embeddings(df, save_path="/model/sbert_embeddings2.pkl"):
7
  """Extracts SBERT embeddings from book summaries."""
8
  model = SentenceTransformer('all-mpnet-base-v2') # Small, fast, high-performance
9
 
@@ -15,7 +15,7 @@ def extract_sbert_embeddings(df, save_path="/model/sbert_embeddings2.pkl"):
15
 
16
  return embeddings
17
 
18
- def load_book_data(filepath="/data/books_summary_cleaned.csv"):
19
  """Loads book dataset and ensures necessary columns exist."""
20
  df = pd.read_csv(filepath)
21
 
 
3
  import pickle
4
  import numpy as np
5
 
6
+ def extract_sbert_embeddings(df, save_path="model/sbert_embeddings2.pkl"):
7
  """Extracts SBERT embeddings from book summaries."""
8
  model = SentenceTransformer('all-mpnet-base-v2') # Small, fast, high-performance
9
 
 
15
 
16
  return embeddings
17
 
18
+ def load_book_data(filepath="data/books_summary_cleaned.csv"):
19
  """Loads book dataset and ensures necessary columns exist."""
20
  df = pd.read_csv(filepath)
21
 
preprocess.py CHANGED
@@ -1,5 +1,3 @@
1
- import pandas as pd
2
-
3
  import pandas as pd
4
  import re
5
 
@@ -10,9 +8,8 @@ def clean_text(text):
10
  text = re.sub(r"\s+", " ", text) # Remove extra spaces
11
  text = re.sub(r"[^a-zA-Z0-9.,!?;:()'\" ]", "", text) # Keep only relevant characters
12
  return text.strip()
13
- import pandas as pd
14
 
15
- def preprocess_books(input_path="/data/books_summary.csv", output_path="/data/books_summary_cleaned.csv"):
16
  """Preprocesses book dataset by handling duplicates, missing values, and text cleaning."""
17
 
18
  # Load dataset
 
 
 
1
  import pandas as pd
2
  import re
3
 
 
8
  text = re.sub(r"\s+", " ", text) # Remove extra spaces
9
  text = re.sub(r"[^a-zA-Z0-9.,!?;:()'\" ]", "", text) # Keep only relevant characters
10
  return text.strip()
 
11
 
12
+ def preprocess_books(input_path="data/books_summary.csv", output_path="data/books_summary_cleaned.csv"):
13
  """Preprocesses book dataset by handling duplicates, missing values, and text cleaning."""
14
 
15
  # Load dataset
recommender.py CHANGED
@@ -5,7 +5,7 @@ from sentence_transformers import SentenceTransformer, util
5
  from embeddings import load_book_data
6
 
7
  class BookRecommender:
8
- def __init__(self, data_path="/data/books_summary.csv", emb_path="/model/sbert_embeddings2.pkl"):
9
  """Loads book dataset and precomputed embeddings."""
10
  # from data_loader import load_book_data
11
  self.df = load_book_data(data_path)
 
5
  from embeddings import load_book_data
6
 
7
  class BookRecommender:
8
+ def __init__(self, data_path="data/books_summary.csv", emb_path="/model/sbert_embeddings2.pkl"):
9
  """Loads book dataset and precomputed embeddings."""
10
  # from data_loader import load_book_data
11
  self.df = load_book_data(data_path)