ardneebwar's picture
Update app.py
7b1bd83
raw
history blame
1.15 kB
import gradio as gr
import torch
from transformers import pipeline
username = "ardneebwar" ## Complete your username
model_id = f"{username}/facebook/hubert-base-ls960"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline("audio-classification", model=model_id, device=device)
def classify_audio(filepath):
import time
start_time = time.time()
# Assuming `pipe` is your model pipeline for inference
preds = pipe(filepath)
outputs = {}
for p in preds:
outputs[p["label"]] = p["score"]
end_time = time.time()
prediction_time = end_time - start_time
return outputs, prediction_time
title = "🎵 Animal Sound Classifier"
description = """
Animal Sound Classifier model (Fine-tuned "ntu-spml/distilhubert") Dataset: ESC-50 from Github (only the animal sounds)
"""
filenames = ['dog.wav', 'cat.wav', 'cow.wav']
filenames = [f"./{f}" for f in filenames]
demo = gr.Interface(
fn=classify_audio,
inputs=gr.Audio(type="filepath"),
outputs=[gr.Label(), gr.Number(label="Prediction time (s)")],
title=title,
description=description,
)
demo.launch()