Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
@@ -1,20 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoModel, AutoTokenizer
|
4 |
from PIL import Image
|
5 |
from decord import VideoReader, cpu
|
6 |
import base64
|
7 |
import io
|
8 |
import spaces
|
9 |
import time
|
|
|
|
|
|
|
10 |
|
11 |
-
# Load
|
12 |
model_path = 'openbmb/MiniCPM-V-2_6'
|
13 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
14 |
model = model.to(device='cuda')
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
16 |
model.eval()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
MAX_NUM_FRAMES = 64
|
19 |
|
20 |
def encode_image(image):
|
@@ -43,6 +55,22 @@ def encode_video(video_path):
|
|
43 |
video = [encode_image(v) for v in video]
|
44 |
return video
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
@spaces.GPU
|
47 |
def analyze_video(prompt, video):
|
48 |
start_time = time.time()
|
@@ -54,7 +82,15 @@ def analyze_video(prompt, video):
|
|
54 |
|
55 |
encoded_video = encode_video(video_path)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
context = [
|
|
|
58 |
{"role": "user", "content": [prompt] + encoded_video}
|
59 |
]
|
60 |
|
@@ -74,19 +110,21 @@ def analyze_video(prompt, video):
|
|
74 |
|
75 |
end_time = time.time()
|
76 |
processing_time = end_time - start_time
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
with gr.Blocks() as demo:
|
81 |
gr.Markdown("# Video Analyzer")
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
84 |
-
prompt_input = gr.Textbox(label="Prompt")
|
85 |
video_input = gr.Video(label="Upload Video")
|
86 |
with gr.Column():
|
87 |
-
|
|
|
88 |
|
89 |
analyze_button = gr.Button("Analyze Video")
|
90 |
-
analyze_button.click(fn=analyze_video, inputs=[prompt_input, video_input], outputs=
|
91 |
|
92 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModel, AutoTokenizer, pipeline
|
4 |
from PIL import Image
|
5 |
from decord import VideoReader, cpu
|
6 |
import base64
|
7 |
import io
|
8 |
import spaces
|
9 |
import time
|
10 |
+
import os
|
11 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
12 |
+
import moviepy.editor as mp
|
13 |
|
14 |
+
# Load models
|
15 |
model_path = 'openbmb/MiniCPM-V-2_6'
|
16 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
17 |
model = model.to(device='cuda')
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
19 |
model.eval()
|
20 |
|
21 |
+
# Load Whisper model
|
22 |
+
whisper_model = "openai/whisper-large-v3"
|
23 |
+
asr_pipeline = pipeline(
|
24 |
+
task="automatic-speech-recognition",
|
25 |
+
model=whisper_model,
|
26 |
+
chunk_length_s=30,
|
27 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
28 |
+
)
|
29 |
+
|
30 |
MAX_NUM_FRAMES = 64
|
31 |
|
32 |
def encode_image(image):
|
|
|
55 |
video = [encode_image(v) for v in video]
|
56 |
return video
|
57 |
|
58 |
+
def extract_audio(video_path):
|
59 |
+
video = mp.VideoFileClip(video_path)
|
60 |
+
audio_path = "temp_audio.wav"
|
61 |
+
video.audio.write_audiofile(audio_path)
|
62 |
+
return audio_path
|
63 |
+
|
64 |
+
def transcribe_audio(audio_file):
|
65 |
+
with open(audio_file, "rb") as f:
|
66 |
+
inputs = f.read()
|
67 |
+
|
68 |
+
inputs = ffmpeg_read(inputs, asr_pipeline.feature_extractor.sampling_rate)
|
69 |
+
inputs = {"array": inputs, "sampling_rate": asr_pipeline.feature_extractor.sampling_rate}
|
70 |
+
|
71 |
+
transcription = asr_pipeline(inputs, batch_size=8, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
72 |
+
return transcription
|
73 |
+
|
74 |
@spaces.GPU
|
75 |
def analyze_video(prompt, video):
|
76 |
start_time = time.time()
|
|
|
82 |
|
83 |
encoded_video = encode_video(video_path)
|
84 |
|
85 |
+
# Extract audio and transcribe
|
86 |
+
audio_path = extract_audio(video_path)
|
87 |
+
transcription = transcribe_audio(audio_path)
|
88 |
+
|
89 |
+
# Clean up temporary audio file
|
90 |
+
os.remove(audio_path)
|
91 |
+
|
92 |
context = [
|
93 |
+
{"role": "system", "content": f"Transcription of the video: {transcription}"},
|
94 |
{"role": "user", "content": [prompt] + encoded_video}
|
95 |
]
|
96 |
|
|
|
110 |
|
111 |
end_time = time.time()
|
112 |
processing_time = end_time - start_time
|
113 |
+
analysis_result = f"Analysis Result:\n{response}\n\n"
|
114 |
+
processing_time = f"Processing Time: {processing_time:.2f} seconds"
|
115 |
+
return analysis_result, processing_time
|
116 |
|
117 |
with gr.Blocks() as demo:
|
118 |
gr.Markdown("# Video Analyzer")
|
119 |
with gr.Row():
|
120 |
with gr.Column():
|
121 |
+
prompt_input = gr.Textbox(label="Prompt", value="What is the video about?")
|
122 |
video_input = gr.Video(label="Upload Video")
|
123 |
with gr.Column():
|
124 |
+
analysis_result = gr.Textbox(label="Analysis Result")
|
125 |
+
processing_time = gr.Textbox(label="Processing Time")
|
126 |
|
127 |
analyze_button = gr.Button("Analyze Video")
|
128 |
+
analyze_button.click(fn=analyze_video, inputs=[prompt_input, video_input], outputs=[analysis_result, processing_time])
|
129 |
|
130 |
demo.launch()
|
app2.py
CHANGED
@@ -1,571 +1,211 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# encoding: utf-8
|
3 |
-
import spaces
|
4 |
-
import torch
|
5 |
-
import argparse
|
6 |
-
from transformers import AutoModel, AutoTokenizer
|
7 |
import gradio as gr
|
8 |
-
|
9 |
-
from
|
10 |
-
import io
|
11 |
import os
|
12 |
-
import
|
13 |
-
import requests
|
14 |
-
import base64
|
15 |
-
import json
|
16 |
-
import traceback
|
17 |
import re
|
18 |
-
import
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# For Nvidia GPUs.
|
24 |
-
# python web_demo_2.6.py --device cuda
|
25 |
-
|
26 |
-
# For Mac with MPS (Apple silicon or AMD GPUs).
|
27 |
-
# PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.6.py --device mps
|
28 |
-
|
29 |
-
# Argparser
|
30 |
-
parser = argparse.ArgumentParser(description='demo')
|
31 |
-
parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
|
32 |
-
parser.add_argument('--multi-gpus', action='store_true', default=False, help='use multi-gpus')
|
33 |
-
args = parser.parse_args()
|
34 |
-
device = args.device
|
35 |
-
assert device in ['cuda', 'mps']
|
36 |
-
|
37 |
-
# Load model
|
38 |
-
model_path = 'openbmb/MiniCPM-V-2_6'
|
39 |
-
if 'int4' in model_path:
|
40 |
-
if device == 'mps':
|
41 |
-
print('Error: running int4 model with bitsandbytes on Mac is not supported right now.')
|
42 |
-
exit()
|
43 |
-
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
44 |
-
else:
|
45 |
-
if False: #args.multi_gpus:
|
46 |
-
from accelerate import load_checkpoint_and_dispatch, init_empty_weights, infer_auto_device_map
|
47 |
-
with init_empty_weights():
|
48 |
-
#model = AutoModel.from_pretrained(model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
|
49 |
-
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
50 |
-
device_map = infer_auto_device_map(model, max_memory={0: "10GB", 1: "10GB"},
|
51 |
-
no_split_module_classes=['SiglipVisionTransformer', 'Qwen2DecoderLayer'])
|
52 |
-
device_id = device_map["llm.model.embed_tokens"]
|
53 |
-
device_map["llm.lm_head"] = device_id # firtt and last layer should be in same device
|
54 |
-
device_map["vpm"] = device_id
|
55 |
-
device_map["resampler"] = device_id
|
56 |
-
device_id2 = device_map["llm.model.layers.26"]
|
57 |
-
device_map["llm.model.layers.8"] = device_id2
|
58 |
-
device_map["llm.model.layers.9"] = device_id2
|
59 |
-
device_map["llm.model.layers.10"] = device_id2
|
60 |
-
device_map["llm.model.layers.11"] = device_id2
|
61 |
-
device_map["llm.model.layers.12"] = device_id2
|
62 |
-
device_map["llm.model.layers.13"] = device_id2
|
63 |
-
device_map["llm.model.layers.14"] = device_id2
|
64 |
-
device_map["llm.model.layers.15"] = device_id2
|
65 |
-
device_map["llm.model.layers.16"] = device_id2
|
66 |
-
#print(device_map)
|
67 |
-
|
68 |
-
#model = load_checkpoint_and_dispatch(model, model_path, dtype=torch.bfloat16, device_map=device_map)
|
69 |
-
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map=device_map)
|
70 |
-
else:
|
71 |
-
#model = AutoModel.from_pretrained(model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
|
72 |
-
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
73 |
-
model = model.to(device=device)
|
74 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
75 |
-
model.eval()
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
ERROR_MSG = "Error, please retry"
|
81 |
-
model_name = 'MiniCPM-V 2.6'
|
82 |
-
MAX_NUM_FRAMES = 64
|
83 |
-
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
|
84 |
-
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}
|
85 |
-
|
86 |
-
def get_file_extension(filename):
|
87 |
-
return os.path.splitext(filename)[1].lower()
|
88 |
-
|
89 |
-
def is_image(filename):
|
90 |
-
return get_file_extension(filename) in IMAGE_EXTENSIONS
|
91 |
-
|
92 |
-
def is_video(filename):
|
93 |
-
return get_file_extension(filename) in VIDEO_EXTENSIONS
|
94 |
-
|
95 |
-
|
96 |
-
form_radio = {
|
97 |
-
'choices': ['Beam Search', 'Sampling'],
|
98 |
-
#'value': 'Beam Search',
|
99 |
-
'value': 'Sampling',
|
100 |
-
'interactive': True,
|
101 |
-
'label': 'Decode Type'
|
102 |
-
}
|
103 |
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
if comp == 'Slider':
|
107 |
-
return gr.Slider(
|
108 |
-
minimum=params['minimum'],
|
109 |
-
maximum=params['maximum'],
|
110 |
-
value=params['value'],
|
111 |
-
step=params['step'],
|
112 |
-
interactive=params['interactive'],
|
113 |
-
label=params['label']
|
114 |
-
)
|
115 |
-
elif comp == 'Radio':
|
116 |
-
return gr.Radio(
|
117 |
-
choices=params['choices'],
|
118 |
-
value=params['value'],
|
119 |
-
interactive=params['interactive'],
|
120 |
-
label=params['label']
|
121 |
-
)
|
122 |
-
elif comp == 'Button':
|
123 |
-
return gr.Button(
|
124 |
-
value=params['value'],
|
125 |
-
interactive=True
|
126 |
-
)
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
def
|
130 |
-
|
131 |
-
|
132 |
-
submit_button_props={'label': 'Submit'})
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
try:
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
msgs=msgs,
|
144 |
-
tokenizer=tokenizer,
|
145 |
-
**params
|
146 |
-
)
|
147 |
-
if params['stream'] is False:
|
148 |
-
res = re.sub(r'(<box>.*</box>)', '', answer)
|
149 |
-
res = res.replace('<ref>', '')
|
150 |
-
res = res.replace('</ref>', '')
|
151 |
-
res = res.replace('<box>', '')
|
152 |
-
answer = res.replace('</box>', '')
|
153 |
-
print('answer:')
|
154 |
-
for char in answer:
|
155 |
-
print(char, flush=True, end='')
|
156 |
-
yield char
|
157 |
except Exception as e:
|
158 |
-
print(e)
|
159 |
-
|
160 |
-
yield ERROR_MSG
|
161 |
-
|
162 |
-
|
163 |
-
def encode_image(image):
|
164 |
-
if not isinstance(image, Image.Image):
|
165 |
-
if hasattr(image, 'path'):
|
166 |
-
image = Image.open(image.path).convert("RGB")
|
167 |
-
else:
|
168 |
-
image = Image.open(image.file.path).convert("RGB")
|
169 |
-
# resize to max_size
|
170 |
-
max_size = 448*16
|
171 |
-
if max(image.size) > max_size:
|
172 |
-
w,h = image.size
|
173 |
-
if w > h:
|
174 |
-
new_w = max_size
|
175 |
-
new_h = int(h * max_size / w)
|
176 |
-
else:
|
177 |
-
new_h = max_size
|
178 |
-
new_w = int(w * max_size / h)
|
179 |
-
image = image.resize((new_w, new_h), resample=Image.BICUBIC)
|
180 |
-
return image
|
181 |
-
## save by BytesIO and convert to base64
|
182 |
-
#buffered = io.BytesIO()
|
183 |
-
#image.save(buffered, format="png")
|
184 |
-
#im_b64 = base64.b64encode(buffered.getvalue()).decode()
|
185 |
-
#return {"type": "image", "pairs": im_b64}
|
186 |
-
|
187 |
-
|
188 |
-
def encode_video(video):
|
189 |
-
def uniform_sample(l, n):
|
190 |
-
gap = len(l) / n
|
191 |
-
idxs = [int(i * gap + gap / 2) for i in range(n)]
|
192 |
-
return [l[i] for i in idxs]
|
193 |
-
|
194 |
-
if hasattr(video, 'path'):
|
195 |
-
vr = VideoReader(video.path, ctx=cpu(0))
|
196 |
-
else:
|
197 |
-
vr = VideoReader(video.file.path, ctx=cpu(0))
|
198 |
-
sample_fps = round(vr.get_avg_fps() / 1) # FPS
|
199 |
-
frame_idx = [i for i in range(0, len(vr), sample_fps)]
|
200 |
-
if len(frame_idx)>MAX_NUM_FRAMES:
|
201 |
-
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
|
202 |
-
video = vr.get_batch(frame_idx).asnumpy()
|
203 |
-
video = [Image.fromarray(v.astype('uint8')) for v in video]
|
204 |
-
video = [encode_image(v) for v in video]
|
205 |
-
print('video frames:', len(video))
|
206 |
-
return video
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
path = mm_file.path
|
212 |
else:
|
213 |
-
|
214 |
-
if is_image(path):
|
215 |
-
return "image"
|
216 |
-
if is_video(path):
|
217 |
-
return "video"
|
218 |
-
return None
|
219 |
-
|
220 |
-
|
221 |
-
def encode_mm_file(mm_file):
|
222 |
-
if check_mm_type(mm_file) == 'image':
|
223 |
-
return [encode_image(mm_file)]
|
224 |
-
if check_mm_type(mm_file) == 'video':
|
225 |
-
return encode_video(mm_file)
|
226 |
-
return None
|
227 |
-
|
228 |
-
def make_text(text):
|
229 |
-
#return {"type": "text", "pairs": text} # # For remote call
|
230 |
-
return text
|
231 |
-
|
232 |
-
def encode_message(_question):
|
233 |
-
files = _question.files
|
234 |
-
question = _question.text
|
235 |
-
pattern = r"\[mm_media\]\d+\[/mm_media\]"
|
236 |
-
matches = re.split(pattern, question)
|
237 |
-
message = []
|
238 |
-
if len(matches) != len(files) + 1:
|
239 |
-
gr.Warning("Number of Images not match the placeholder in text, please refresh the page to restart!")
|
240 |
-
assert len(matches) == len(files) + 1
|
241 |
-
|
242 |
-
text = matches[0].strip()
|
243 |
-
if text:
|
244 |
-
message.append(make_text(text))
|
245 |
-
for i in range(len(files)):
|
246 |
-
message += encode_mm_file(files[i])
|
247 |
-
text = matches[i + 1].strip()
|
248 |
-
if text:
|
249 |
-
message.append(make_text(text))
|
250 |
-
return message
|
251 |
-
|
252 |
-
|
253 |
-
def check_has_videos(_question):
|
254 |
-
images_cnt = 0
|
255 |
-
videos_cnt = 0
|
256 |
-
for file in _question.files:
|
257 |
-
if check_mm_type(file) == "image":
|
258 |
-
images_cnt += 1
|
259 |
-
else:
|
260 |
-
videos_cnt += 1
|
261 |
-
return images_cnt, videos_cnt
|
262 |
-
|
263 |
-
|
264 |
-
def count_video_frames(_context):
|
265 |
-
num_frames = 0
|
266 |
-
for message in _context:
|
267 |
-
for item in message["content"]:
|
268 |
-
#if item["type"] == "image": # For remote call
|
269 |
-
if isinstance(item, Image.Image):
|
270 |
-
num_frames += 1
|
271 |
-
return num_frames
|
272 |
-
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
videos_cnt = _app_cfg['videos_cnt']
|
277 |
-
files_cnts = check_has_videos(_question)
|
278 |
-
if files_cnts[1] + videos_cnt > 1 or (files_cnts[1] + videos_cnt == 1 and files_cnts[0] + images_cnt > 0):
|
279 |
-
gr.Warning("Only supports single video file input right now!")
|
280 |
-
return _question, _chat_bot, _app_cfg
|
281 |
-
if files_cnts[1] + videos_cnt + files_cnts[0] + images_cnt <= 0:
|
282 |
-
gr.Warning("Please chat with at least one image or video.")
|
283 |
-
return _question, _chat_bot, _app_cfg
|
284 |
-
_chat_bot.append((_question, None))
|
285 |
-
images_cnt += files_cnts[0]
|
286 |
-
videos_cnt += files_cnts[1]
|
287 |
-
_app_cfg['images_cnt'] = images_cnt
|
288 |
-
_app_cfg['videos_cnt'] = videos_cnt
|
289 |
-
upload_image_disabled = videos_cnt > 0
|
290 |
-
upload_video_disabled = videos_cnt > 0 or images_cnt > 0
|
291 |
-
return create_multimodal_input(upload_image_disabled, upload_video_disabled), _chat_bot, _app_cfg
|
292 |
|
|
|
|
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
elif _app_cfg['images_cnt'] == 0 and _app_cfg['videos_cnt'] == 0:
|
298 |
-
yield(_chat_bot, _app_cfg)
|
299 |
else:
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
|
|
305 |
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
else:
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
'top_p': 0.8,
|
319 |
-
'top_k': 100,
|
320 |
-
'temperature': 0.7,
|
321 |
-
'repetition_penalty': 1.05,
|
322 |
-
"max_new_tokens": 2048
|
323 |
-
}
|
324 |
-
params["max_inp_length"] = 4352 # 4096+256
|
325 |
-
|
326 |
-
if videos_cnt > 0:
|
327 |
-
#params["max_inp_length"] = 4352 # 4096+256
|
328 |
-
params["use_image_id"] = False
|
329 |
-
params["max_slice_nums"] = 1 if count_video_frames(_context) > 16 else 2
|
330 |
-
|
331 |
-
gen = chat("", _context, None, params)
|
332 |
-
|
333 |
-
_context.append({"role": "assistant", "content": [""]})
|
334 |
-
_chat_bot[-1][1] = ""
|
335 |
-
|
336 |
-
for _char in gen:
|
337 |
-
_chat_bot[-1][1] += _char
|
338 |
-
_context[-1]["content"][0] += _char
|
339 |
-
yield (_chat_bot, _app_cfg)
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
-
def
|
346 |
-
|
347 |
-
|
348 |
-
if _image is not None:
|
349 |
-
image = Image.open(_image).convert("RGB")
|
350 |
-
ctx.append({"role": "user", "content": [encode_image(image), make_text(_user_message)]})
|
351 |
-
message_item.append({"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]})
|
352 |
-
_app_cfg["images_cnt"] += 1
|
353 |
-
else:
|
354 |
-
if _user_message:
|
355 |
-
ctx.append({"role": "user", "content": [make_text(_user_message)]})
|
356 |
-
message_item.append({"text": _user_message, "files": []})
|
357 |
else:
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
message_item.append(None)
|
364 |
-
|
365 |
-
_chat_bot.append(message_item)
|
366 |
-
return None, "", "", _chat_bot, _app_cfg
|
367 |
-
|
368 |
-
|
369 |
-
def fewshot_request(_image, _user_message, _chat_bot, _app_cfg):
|
370 |
-
if _app_cfg["images_cnt"] == 0 and not _image:
|
371 |
-
gr.Warning("Please chat with at least one image.")
|
372 |
-
return None, '', '', _chat_bot, _app_cfg
|
373 |
-
if _image:
|
374 |
-
_chat_bot.append([
|
375 |
-
{"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]},
|
376 |
-
""
|
377 |
-
])
|
378 |
-
_app_cfg["images_cnt"] += 1
|
379 |
else:
|
380 |
-
|
381 |
-
{"text": _user_message, "files": [_image]},
|
382 |
-
""
|
383 |
-
])
|
384 |
-
|
385 |
-
return None, '', '', _chat_bot, _app_cfg
|
386 |
-
|
387 |
-
|
388 |
-
def regenerate_button_clicked(_chat_bot, _app_cfg):
|
389 |
-
if len(_chat_bot) <= 1 or not _chat_bot[-1][1]:
|
390 |
-
gr.Warning('No question for regeneration.')
|
391 |
-
return None, None, '', '', _chat_bot, _app_cfg
|
392 |
-
if _app_cfg["chat_type"] == "Chat":
|
393 |
-
images_cnt = _app_cfg['images_cnt']
|
394 |
-
videos_cnt = _app_cfg['videos_cnt']
|
395 |
-
_question = _chat_bot[-1][0]
|
396 |
-
_chat_bot = _chat_bot[:-1]
|
397 |
-
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
|
398 |
-
files_cnts = check_has_videos(_question)
|
399 |
-
images_cnt -= files_cnts[0]
|
400 |
-
videos_cnt -= files_cnts[1]
|
401 |
-
_app_cfg['images_cnt'] = images_cnt
|
402 |
-
_app_cfg['videos_cnt'] = videos_cnt
|
403 |
|
404 |
-
|
405 |
-
|
406 |
-
else:
|
407 |
-
last_message = _chat_bot[-1][0]
|
408 |
-
last_image = None
|
409 |
-
last_user_message = ''
|
410 |
-
if last_message.text:
|
411 |
-
last_user_message = last_message.text
|
412 |
-
if last_message.files:
|
413 |
-
last_image = last_message.files[0].file.path
|
414 |
-
_chat_bot[-1][1] = ""
|
415 |
-
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
|
416 |
-
return _question, None, '', '', _chat_bot, _app_cfg
|
417 |
-
|
418 |
-
|
419 |
-
def flushed():
|
420 |
-
return gr.update(interactive=True)
|
421 |
-
|
422 |
-
|
423 |
-
def clear(txt_message, chat_bot, app_session):
|
424 |
-
txt_message.files.clear()
|
425 |
-
txt_message.text = ''
|
426 |
-
chat_bot = copy.deepcopy(init_conversation)
|
427 |
-
app_session['sts'] = None
|
428 |
-
app_session['ctx'] = []
|
429 |
-
app_session['images_cnt'] = 0
|
430 |
-
app_session['videos_cnt'] = 0
|
431 |
-
return create_multimodal_input(), chat_bot, app_session, None, '', ''
|
432 |
|
433 |
-
|
434 |
-
def select_chat_type(_tab, _app_cfg):
|
435 |
-
_app_cfg["chat_type"] = _tab
|
436 |
-
return _app_cfg
|
437 |
-
|
438 |
-
|
439 |
-
init_conversation = [
|
440 |
-
[
|
441 |
-
None,
|
442 |
-
{
|
443 |
-
# The first message of bot closes the typewriter.
|
444 |
-
"text": "You can talk to me now",
|
445 |
-
"flushing": False
|
446 |
-
}
|
447 |
-
],
|
448 |
-
]
|
449 |
-
|
450 |
-
|
451 |
-
css = """
|
452 |
-
.example label { font-size: 16px;}
|
453 |
-
"""
|
454 |
-
|
455 |
-
introduction = """
|
456 |
-
|
457 |
-
## Features:
|
458 |
-
1. Chat with single image
|
459 |
-
2. Chat with multiple images
|
460 |
-
3. Chat with video
|
461 |
-
4. In-context few-shot learning
|
462 |
-
|
463 |
-
Click `How to use` tab to see examples.
|
464 |
-
"""
|
465 |
-
|
466 |
-
|
467 |
-
with gr.Blocks(css=css) as demo:
|
468 |
-
with gr.Tab(model_name):
|
469 |
-
with gr.Row():
|
470 |
-
with gr.Column(scale=1, min_width=300):
|
471 |
-
gr.Markdown(value=introduction)
|
472 |
-
params_form = create_component(form_radio, comp='Radio')
|
473 |
-
regenerate = create_component({'value': 'Regenerate'}, comp='Button')
|
474 |
-
clear_button = create_component({'value': 'Clear History'}, comp='Button')
|
475 |
-
|
476 |
-
with gr.Column(scale=3, min_width=500):
|
477 |
-
app_session = gr.State({'sts':None,'ctx':[], 'images_cnt': 0, 'videos_cnt': 0, 'chat_type': 'Chat'})
|
478 |
-
chat_bot = mgr.Chatbot(label=f"Chat with {model_name}", value=copy.deepcopy(init_conversation), height=600, flushing=False, bubble_full_width=False)
|
479 |
-
|
480 |
-
with gr.Tab("Chat") as chat_tab:
|
481 |
-
txt_message = create_multimodal_input()
|
482 |
-
chat_tab_label = gr.Textbox(value="Chat", interactive=False, visible=False)
|
483 |
-
|
484 |
-
txt_message.submit(
|
485 |
-
request,
|
486 |
-
[txt_message, chat_bot, app_session],
|
487 |
-
[txt_message, chat_bot, app_session]
|
488 |
-
).then(
|
489 |
-
respond,
|
490 |
-
[chat_bot, app_session, params_form],
|
491 |
-
[chat_bot, app_session]
|
492 |
-
)
|
493 |
-
|
494 |
-
with gr.Tab("Few Shot") as fewshot_tab:
|
495 |
-
fewshot_tab_label = gr.Textbox(value="Few Shot", interactive=False, visible=False)
|
496 |
-
with gr.Row():
|
497 |
-
with gr.Column(scale=1):
|
498 |
-
image_input = gr.Image(type="filepath", sources=["upload"])
|
499 |
-
with gr.Column(scale=3):
|
500 |
-
user_message = gr.Textbox(label="User")
|
501 |
-
assistant_message = gr.Textbox(label="Assistant")
|
502 |
-
with gr.Row():
|
503 |
-
add_demonstration_button = gr.Button("Add Example")
|
504 |
-
generate_button = gr.Button(value="Generate", variant="primary")
|
505 |
-
add_demonstration_button.click(
|
506 |
-
fewshot_add_demonstration,
|
507 |
-
[image_input, user_message, assistant_message, chat_bot, app_session],
|
508 |
-
[image_input, user_message, assistant_message, chat_bot, app_session]
|
509 |
-
)
|
510 |
-
generate_button.click(
|
511 |
-
fewshot_request,
|
512 |
-
[image_input, user_message, chat_bot, app_session],
|
513 |
-
[image_input, user_message, assistant_message, chat_bot, app_session]
|
514 |
-
).then(
|
515 |
-
respond,
|
516 |
-
[chat_bot, app_session, params_form],
|
517 |
-
[chat_bot, app_session]
|
518 |
-
)
|
519 |
-
|
520 |
-
chat_tab.select(
|
521 |
-
select_chat_type,
|
522 |
-
[chat_tab_label, app_session],
|
523 |
-
[app_session]
|
524 |
-
)
|
525 |
-
chat_tab.select( # do clear
|
526 |
-
clear,
|
527 |
-
[txt_message, chat_bot, app_session],
|
528 |
-
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
|
529 |
-
)
|
530 |
-
fewshot_tab.select(
|
531 |
-
select_chat_type,
|
532 |
-
[fewshot_tab_label, app_session],
|
533 |
-
[app_session]
|
534 |
-
)
|
535 |
-
fewshot_tab.select( # do clear
|
536 |
-
clear,
|
537 |
-
[txt_message, chat_bot, app_session],
|
538 |
-
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
|
539 |
-
)
|
540 |
-
chat_bot.flushed(
|
541 |
-
flushed,
|
542 |
-
outputs=[txt_message]
|
543 |
-
)
|
544 |
-
regenerate.click(
|
545 |
-
regenerate_button_clicked,
|
546 |
-
[chat_bot, app_session],
|
547 |
-
[txt_message, image_input, user_message, assistant_message, chat_bot, app_session]
|
548 |
-
).then(
|
549 |
-
respond,
|
550 |
-
[chat_bot, app_session, params_form],
|
551 |
-
[chat_bot, app_session]
|
552 |
-
)
|
553 |
-
clear_button.click(
|
554 |
-
clear,
|
555 |
-
[txt_message, chat_bot, app_session],
|
556 |
-
[txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
|
557 |
-
)
|
558 |
-
|
559 |
-
with gr.Tab("How to use"):
|
560 |
with gr.Column():
|
|
|
561 |
with gr.Row():
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import yt_dlp
|
3 |
+
from dotenv import load_dotenv
|
|
|
4 |
import os
|
5 |
+
import google.generativeai as genai
|
|
|
|
|
|
|
|
|
6 |
import re
|
7 |
+
import torch
|
8 |
+
from transformers import pipeline
|
9 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
10 |
+
import time
|
11 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
load_dotenv()
|
14 |
+
default_gemini_api_key = os.getenv('gemini_api_key')
|
15 |
|
16 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
def load_pipeline(model_name):
|
19 |
+
return pipeline(
|
20 |
+
task="automatic-speech-recognition",
|
21 |
+
model=model_name,
|
22 |
+
chunk_length_s=30,
|
23 |
+
device=device,
|
24 |
+
)
|
25 |
|
26 |
+
def configure_genai(api_key, model_variant):
|
27 |
+
genai.configure(api_key=api_key)
|
28 |
+
return genai.GenerativeModel(model_variant)
|
|
|
29 |
|
30 |
+
def extract_youtube_id(youtube_url):
|
31 |
+
# Extract the YouTube video ID from various URL formats
|
32 |
+
youtube_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', youtube_url)
|
33 |
+
if youtube_id_match:
|
34 |
+
return youtube_id_match.group(1)
|
35 |
+
return None
|
36 |
|
37 |
+
def download_youtube_audio(youtube_url, output_filename):
|
38 |
+
ydl_opts = {
|
39 |
+
'format': 'bestaudio/best',
|
40 |
+
'postprocessors': [{
|
41 |
+
'key': 'FFmpegExtractAudio',
|
42 |
+
'preferredcodec': 'mp3',
|
43 |
+
'preferredquality': '192',
|
44 |
+
}],
|
45 |
+
'outtmpl': output_filename,
|
46 |
+
}
|
47 |
+
|
48 |
try:
|
49 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
50 |
+
ydl.download([youtube_url])
|
51 |
+
|
52 |
+
print(f"Downloaded audio from YouTube URL: {youtube_url}")
|
53 |
+
return output_filename
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
except Exception as e:
|
55 |
+
print(f"Error downloading YouTube audio: {str(e)}")
|
56 |
+
raise gr.Error(f"Failed to download YouTube audio: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
def summarize_transcription(transcription, model, gemini_prompt):
|
59 |
+
try:
|
60 |
+
prompt = f"{gemini_prompt}:\n\n{transcription}"
|
61 |
+
response = model.generate_content(prompt)
|
62 |
+
return response.text
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error summarizing transcription: {str(e)}")
|
65 |
+
return f"Error summarizing transcription: {str(e)}"
|
66 |
+
|
67 |
+
@spaces.GPU(duration=180)
|
68 |
+
def process_audio(audio_file, language, whisper_model):
|
69 |
+
print("Starting transcription...")
|
70 |
+
start_time = time.time()
|
71 |
|
72 |
+
if device == 0:
|
73 |
+
pipe = load_pipeline(whisper_model)
|
|
|
74 |
else:
|
75 |
+
pipe = load_pipeline("openai/whisper-tiny")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
with open(audio_file, "rb") as f:
|
78 |
+
inputs = f.read()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
81 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
82 |
|
83 |
+
if language:
|
84 |
+
print(f"Using language: {language}")
|
85 |
+
transcription = pipe(inputs, batch_size=8, generate_kwargs={"task": "transcribe", "language": language}, return_timestamps=True)["text"]
|
|
|
|
|
86 |
else:
|
87 |
+
print("No language defined, using default language")
|
88 |
+
transcription = pipe(inputs, batch_size=8, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
89 |
+
|
90 |
+
end_time = time.time()
|
91 |
+
processing_time = round(end_time - start_time, 2)
|
92 |
+
return transcription, processing_time
|
93 |
|
94 |
+
def transcribe(youtube_url, audio_file, whisper_model, gemini_api_key, gemini_prompt, gemini_model_variant, language, progress=gr.Progress()):
|
95 |
+
try:
|
96 |
+
progress(0, desc="Initializing")
|
97 |
+
if not gemini_api_key:
|
98 |
+
gemini_api_key = default_gemini_api_key
|
99 |
+
model = configure_genai(gemini_api_key, gemini_model_variant)
|
100 |
+
|
101 |
+
if youtube_url:
|
102 |
+
progress(0.1, desc="Extracting YouTube ID")
|
103 |
+
youtube_id = extract_youtube_id(youtube_url)
|
104 |
+
if youtube_id:
|
105 |
+
output_filename = f"{youtube_id}"
|
106 |
+
else:
|
107 |
+
output_filename = f"unknown"
|
108 |
+
progress(0.2, desc="Downloading YouTube audio")
|
109 |
+
audio_file = download_youtube_audio(youtube_url, output_filename)
|
110 |
+
audio_file = f"{audio_file}.mp3"
|
111 |
+
print(f"Audio file downloaded: {audio_file}")
|
112 |
else:
|
113 |
+
progress(0.2, desc="Reading audio file")
|
114 |
+
audio_file = f"{audio_file.name}"
|
115 |
+
print(f"Audio file read: {audio_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
progress(0.4, desc="Starting transcription")
|
118 |
+
transcription, processing_time = process_audio(audio_file, language, whisper_model)
|
119 |
+
|
120 |
+
progress(0.6, desc="Cleaning up")
|
121 |
+
# Delete the audio file after transcription
|
122 |
+
if os.path.exists(f"{audio_file}.mp3"):
|
123 |
+
os.remove(f"{audio_file}.mp3")
|
124 |
+
print(f"Deleted audio file: {audio_file}.mp3")
|
125 |
+
|
126 |
+
progress(0.7, desc="Summarizing transcription")
|
127 |
+
# Summarize the transcription
|
128 |
+
summary = summarize_transcription(transcription, model, gemini_prompt)
|
129 |
+
|
130 |
+
progress(0.8, desc="Preparing output")
|
131 |
+
# Prepare the transcription and summary message
|
132 |
+
transcription_message = f"{transcription}" if transcription else ""
|
133 |
+
|
134 |
+
summary_message = f"{summary}" if summary else ""
|
135 |
+
|
136 |
+
progress(0.9, desc="Saving output to file")
|
137 |
+
print("Saving transcription and summary to file...")
|
138 |
+
# Save transcription and summary to separate text files
|
139 |
+
transcription_file = "transcription_output.txt"
|
140 |
+
summary_file = "summary_output.txt"
|
141 |
+
with open(transcription_file, "w", encoding="utf-8") as f:
|
142 |
+
f.write(transcription_message)
|
143 |
+
with open(summary_file, "w", encoding="utf-8") as f:
|
144 |
+
f.write(summary_message)
|
145 |
+
|
146 |
+
progress(1, desc="Complete")
|
147 |
+
print("Transcription and summarization complete.")
|
148 |
+
return transcription_message, summary_message, transcription_file, summary_file, processing_time
|
149 |
+
except gr.Error as e:
|
150 |
+
# Re-raise Gradio errors
|
151 |
+
raise e
|
152 |
+
except Exception as e:
|
153 |
+
print(f"Error during transcription or summarization: {str(e)}")
|
154 |
+
raise gr.Error(f"Transcription or summarization failed: {str(e)}")
|
155 |
|
156 |
+
def toggle_input(choice):
|
157 |
+
if choice == "YouTube URL":
|
158 |
+
return gr.update(visible=True), gr.update(visible=False, value=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
else:
|
160 |
+
return gr.update(visible=False, value=None), gr.update(visible=True)
|
161 |
+
|
162 |
+
def toggle_language(choice):
|
163 |
+
if choice == True:
|
164 |
+
return gr.update(visible=True, value="id")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
else:
|
166 |
+
return gr.update(visible=False, value="")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
with gr.Blocks(theme='NoCrypt/miku') as demo:
|
169 |
+
gr.Label('Youtube Summarizer WebUI created with β€οΈ by Ryusui', show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
with gr.Accordion("Input"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
with gr.Column():
|
173 |
+
input_type = gr.Radio(["YouTube URL", "Audio File"], label="Input Type", value="Audio File", info="Please consider using the audio file if you face any issues with the YouTube URL. Currently youtube is banning HuggingFace IP Addresses.")
|
174 |
with gr.Row():
|
175 |
+
youtube_url = gr.Textbox(label="YouTube URL", visible=False, info="Input the full URL of the YouTube video you want to transcribe and summarize. Example: https://www.youtube.com/watch?v=VIDEO_ID")
|
176 |
+
audio_file = gr.File(label="Upload Audio File", visible=True, file_types=['.wav', '.flac', '.mp3'])
|
177 |
+
whisper_model = gr.Dropdown(["openai/whisper-tiny", "openai/whisper-base", "openai/whisper-small", "openai/whisper-medium", "openai/whisper-large-v3"], label="Whisper Model", value="openai/whisper-large-v3", info="Tiny is the fastest model, but it's not the best quality. large-v3 is the best quality, but it's the slowest model.")
|
178 |
+
gemini_model_variant = gr.Dropdown(["gemini-1.5-flash", "gemini-1.5-pro"], label="Gemini Model Variant", value="gemini-1.5-pro", info="Gemini-1.5-flash is the fastest model, but it's not the best quality. Gemini-1.5-pro is the best quality, but it's slower")
|
179 |
+
define_language = gr.Checkbox(label="Define Language", value=False, info="If you want to define the language, check this box")
|
180 |
+
language = gr.Dropdown(["id","en", "es", "fr", "de", "it", "pt", "ru", "ja", "ko", "zh"], label="Language", value=None, info="Select the language for transcription", visible=False)
|
181 |
+
gemini_api_key = gr.Textbox(label="Gemini API Key (Optional)", placeholder="Enter your Gemini API key or leave blank to use default", info="If you facing error on transcription, please try to use your own API key")
|
182 |
+
gemini_prompt = gr.Textbox(label="Gemini Prompt", value="Buatkan resume dari transkrip ini")
|
183 |
+
transcribe_button = gr.Button("Transcribe and Summarize")
|
184 |
+
|
185 |
+
with gr.Accordion("Output"):
|
186 |
+
with gr.Column():
|
187 |
+
transcription_output = gr.Textbox(label="Transcription Output")
|
188 |
+
summary_output = gr.Textbox(label="Summary Output")
|
189 |
+
transcription_file = gr.File(label="Download Transcription")
|
190 |
+
summary_file = gr.File(label="Download Summary")
|
191 |
+
processing_time = gr.Textbox(label="Transcription Processing Time (seconds)")
|
192 |
+
|
193 |
+
input_type.change(fn=toggle_input, inputs=input_type, outputs=[youtube_url, audio_file])
|
194 |
+
define_language.change(fn=toggle_language, inputs=define_language, outputs=[language])
|
195 |
+
|
196 |
+
transcribe_button.click(
|
197 |
+
fn=transcribe,
|
198 |
+
inputs=[
|
199 |
+
youtube_url,
|
200 |
+
audio_file,
|
201 |
+
whisper_model,
|
202 |
+
gemini_api_key,
|
203 |
+
gemini_prompt,
|
204 |
+
gemini_model_variant,
|
205 |
+
language,
|
206 |
+
],
|
207 |
+
outputs=[transcription_output, summary_output, transcription_file, summary_file, processing_time]
|
208 |
+
)
|
209 |
+
|
210 |
+
print("Launching Gradio interface...")
|
211 |
+
demo.launch()
|