Spaces:
Sleeping
Sleeping
File size: 1,240 Bytes
d7deef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import streamlit as st
import cv2
import numpy as np
from PIL import Image
def warp_perspective(image, points):
# Input and output dimensions
w, h = 300, 400 # You can adjust this based on the desired output size
input_pts = np.array(points, dtype=np.float32)
output_pts = np.array([[0, 0], [w, 0], [w, h], [0, h]], dtype=np.float32)
# Compute perspective matrix and warp the image
matrix = cv2.getPerspectiveTransform(input_pts, output_pts)
warped_img = cv2.warpPerspective(image, matrix, (w, h))
return warped_img
st.title("Custom Shape Cropping & Perspective Correction")
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
# Provide a placeholder for the user to input 4 vertices
points = []
for i in range(4):
coords = st.text_input(f"Enter point {i+1} (format: x,y)", "")
x, y = map(int, coords.split(',')) if ',' in coords else (0, 0)
points.append([x, y])
if uploaded_file and len(points) == 4:
image = Image.open(uploaded_file).convert('RGB')
image_np = np.array(image)
corrected_image = warp_perspective(image_np, points)
st.image(corrected_image, caption='Corrected Image.', channels="BGR", use_column_width=True)
|