import spaces import gradio as gr import pandas as pd import yt_dlp import os from semantic_chunkers import StatisticalChunker from semantic_router.encoders import HuggingFaceEncoder from faster_whisper import WhisperModel import io # Function to download YouTube audio and return it as a BytesIO object def download_youtube_audio(url, preferred_quality="192"): ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': preferred_quality, }], 'outtmpl': '-', # Output to stdout } try: with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(url, download=False) video_title = info_dict.get('title', None) print(f"Downloading audio for: {video_title}") # Download audio to a BytesIO object audio_buffer = io.BytesIO() ydl.download([url], audio_buffer) audio_buffer.seek(0) print("Audio download complete") return audio_buffer except yt_dlp.utils.DownloadError as e: print(f"Error downloading audio: {e}") return None # Function to transcribe audio from BytesIO using WhisperModel @spaces.GPU def transcribe(audio_buffer, model_name="medium"): model = WhisperModel(model_name) print("Reading audio buffer") # Hypothetical support for BytesIO object segments, info = model.transcribe(audio_buffer) return segments # Function to process segments and convert them into a DataFrame @spaces.GPU def process_segments(segments): result = {} print("Processing...") for i, segment in enumerate(segments): chunk_id = f"chunk_{i}" result[chunk_id] = { 'chunk_id': segment.id, 'chunk_length': segment.end - segment.start, 'text': segment.text, 'start_time': segment.start, 'end_time': segment.end } df = pd.DataFrame.from_dict(result, orient='index') df.to_csv('final.csv') # Save DataFrame to final.csv return df # Gradio interface functions @spaces.GPU def generate_transcript(youtube_url, model_name="large-v3"): audio_buffer = download_youtube_audio(youtube_url) if audio_buffer is None: return "Error downloading audio" segments = transcribe(audio_buffer, model_name) df = process_segments(segments) lis = list(df['text']) encoder = HuggingFaceEncoder(name="sentence-transformers/all-MiniLM-L6-v2") chunker = StatisticalChunker(encoder=encoder, dynamic_threshold=True, min_split_tokens=30, max_split_tokens=40, window_size=2, enable_statistics=False) chunks = chunker._chunk(lis) row_index = 0 for i in range(len(chunks)): for j in range(len(chunks[i].splits)): df.at[row_index, 'chunk_id2'] = f'chunk_{i}' row_index += 1 grouped = df.groupby('chunk_id2').agg({ 'start_time': 'min', 'end_time': 'max', 'text': lambda x: ' '.join(x), 'chunk_id': list }).reset_index() grouped = grouped.rename(columns={'chunk_id': 'chunk_ids'}) grouped['chunk_length'] = grouped['end_time'] - grouped['start_time'] grouped['chunk_id'] = grouped['chunk_id2'] grouped = grouped.drop(columns=['chunk_id2', 'chunk_ids']) grouped.to_csv('final.csv') df = pd.read_csv("final.csv") transcripts = df.to_dict(orient='records') return transcripts # Function to download video using yt-dlp and generate transcript HTML def download_video(youtube_url): ydl_opts = { 'format': 'mp4', 'outtmpl': 'downloaded_video.mp4', 'quiet': True } with yt_dlp.YoutubeDL({'quiet': True}) as ydl: info_dict = ydl.extract_info(youtube_url, download=False) video_path = 'downloaded_video.mp4' if not os.path.exists(video_path): with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([youtube_url]) transcripts = generate_transcript(youtube_url) transcript_html = "" for t in transcripts: transcript_html += f'
' return video_path, transcript_html # Function to search the transcript def search_transcript(keyword): transcripts = pd.read_csv("final.csv").to_dict(orient='records') search_results = "" for t in transcripts: if keyword.lower() in t['text'].lower(): search_results += f'' return search_results # CSS for styling css = """ .fixed-video { width: 480px !important; height: 270px !important; } .fixed-transcript { width: 480px !important; height: 270px !important; overflow-y: auto; } .transcript-block { margin: 10px 0; padding: 10px; border: 1px solid #ddd; border-radius: 5px; background-color: #f9f9f9; } .transcript-block a { text-decoration: none; color: #007bff; } .transcript-block a:hover { text-decoration: underline; } """ # Gradio interface with gr.Blocks(css=css) as demo: gr.Markdown("# YouTube Video Player with Clickable Transcript") with gr.Row(): youtube_url = gr.Textbox(label="YouTube URL", placeholder="Enter YouTube video link here") download_button = gr.Button("Download and Display Transcript") with gr.Row(): video = gr.Video(label="Video Player", elem_id="video-player", elem_classes="fixed-video") transcript_display = gr.HTML(label="Transcript", elem_classes="fixed-transcript") with gr.Row(): search_box = gr.Textbox(label="Search Transcript", placeholder="Enter keyword to search") search_button = gr.Button("Search") search_results_display = gr.HTML(label="Search Results", elem_classes="fixed-transcript") # On button click, download the video and display the transcript def display_transcript(youtube_url): video_path, transcript_html = download_video(youtube_url) return video_path, transcript_html download_button.click(fn=display_transcript, inputs=youtube_url, outputs=[video, transcript_display]) # On search button click, search the transcript and display results search_button.click(fn=search_transcript, inputs=search_box, outputs=search_results_display) # Launch the interface demo.launch()