import os from threading import Thread from typing import Iterator, List, Tuple import json import gradio as gr import spaces import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from flask import Flask, request, jsonify DESCRIPTION = """\ # Zero GPU Model Comparison Arena Compare two language models using Hugging Face's Zero GPU initiative. Select two different models from the dropdowns and see how they perform on the same input. """ MAX_MAX_NEW_TOKENS = 1024 DEFAULT_MAX_NEW_TOKENS = 256 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") MODEL_OPTIONS = [ "sarvamai/OpenHathi-7B-Hi-v0.1-Base", "TokenBender/Navarna_v0_1_OpenHermes_Hindi" ] models = {} tokenizers = {} # Custom chat templates MISTRAL_TEMPLATE = """[INST] {instruction} [/INST] {response} [INST] {instruction} [/INST] """ LLAMA_TEMPLATE = """[INST] <> You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <> {instruction} [/INST] {response} [INST] {instruction} [/INST] """ for model_id in MODEL_OPTIONS: tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id) models[model_id] = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", load_in_8bit=True, ) models[model_id].eval() # Set custom chat templates if "Navarna" in model_id: tokenizers[model_id].chat_template = MISTRAL_TEMPLATE elif "OpenHathi" in model_id: tokenizers[model_id].chat_template = LLAMA_TEMPLATE # Initialize Flask app app = Flask(__name__) @app.route('/log', methods=['POST']) def log_results(): data = request.json # Here you can implement any additional processing or storage logic print("Logged:", json.dumps(data, indent=2)) return jsonify({"status": "success"}), 200 @spaces.GPU(duration=90) def generate( model_id: str, message: str, chat_history: List[Tuple[str, str]], max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, temperature: float = 0.7, top_p: float = 0.95, ) -> Iterator[str]: model = models[model_id] tokenizer = tokenizers[model_id] conversation = [] for user, assistant in chat_history: conversation.extend([ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=temperature, num_beams=1, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) def compare_models( model1_name: str, model2_name: str, message: str, chat_history1: List[Tuple[str, str]], chat_history2: List[Tuple[str, str]], max_new_tokens: int, temperature: float, top_p: float, ) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]: if model1_name == model2_name: error_message = [("System", "Error: Please select two different models.")] return error_message, error_message, chat_history1, chat_history2 output1 = "".join(list(generate(model1_name, message, chat_history1, max_new_tokens, temperature, top_p))) output2 = "".join(list(generate(model2_name, message, chat_history2, max_new_tokens, temperature, top_p))) chat_history1.append((message, output1)) chat_history2.append((message, output2)) log_comparison(model1_name, model2_name, message, output1, output2) return chat_history1, chat_history2, chat_history1, chat_history2 def log_comparison(model1_name: str, model2_name: str, question: str, answer1: str, answer2: str, winner: str = None): log_data = { "question": question, "model1": {"name": model1_name, "answer": answer1}, "model2": {"name": model2_name, "answer": answer2}, "winner": winner } # Send log data to Flask server import requests try: response = requests.post('http://144.24.151.32:5000/log', json=log_data) if response.status_code == 200: print("Successfully logged to server") else: print(f"Failed to log to server. Status code: {response.status_code}") except requests.RequestException as e: print(f"Error sending log to server: {e}") def vote_better(model1_name, model2_name, question, answer1, answer2, choice): winner = model1_name if choice == "Model 1" else model2_name log_comparison(model1_name, model2_name, question, answer1, answer2, winner) return f"You voted that {winner} performs better. This has been logged." with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): model1_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 1", value=MODEL_OPTIONS[0]) chatbot1 = gr.Chatbot(label="Model 1 Output") with gr.Column(): model2_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 2", value=MODEL_OPTIONS[1]) chatbot2 = gr.Chatbot(label="Model 2 Output") text_input = gr.Textbox(label="Input Text", lines=3) with gr.Row(): max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, value=0.95) compare_btn = gr.Button("Compare Models") with gr.Row(): better1_btn = gr.Button("Model 1 is Better") better2_btn = gr.Button("Model 2 is Better") vote_output = gr.Textbox(label="Voting Result") compare_btn.click( compare_models, inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, max_new_tokens, temperature, top_p], outputs=[chatbot1, chatbot2, chatbot1, chatbot2] ) better1_btn.click( vote_better, inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 1", visible=False)], outputs=[vote_output] ) better2_btn.click( vote_better, inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 2", visible=False)], outputs=[vote_output] ) if __name__ == "__main__": # Start Flask server in a separate thread flask_thread = Thread(target=app.run, kwargs={"host": "0.0.0.0", "port": 5000}) flask_thread.start() # Start Gradio app demo.queue(max_size=10).launch()