File size: 8,775 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
###################### OpenHands Configuration Example ######################
#
# All settings have default values, so you only need to uncomment and
# modify what you want to change
# The fields within each section are sorted in alphabetical order.
#
##############################################################################
#################################### Core ####################################
# General core configurations
##############################################################################
[core]
# API key for E2B
#e2b_api_key = ""
# API key for Modal
#modal_api_token_id = ""
#modal_api_token_secret = ""
# Base path for the workspace
workspace_base = "./workspace"
# Cache directory path
#cache_dir = "/tmp/cache"
# Reasoning effort for o1 models (low, medium, high, or not set)
#reasoning_effort = "medium"
# Debugging enabled
#debug = false
# Disable color in terminal output
#disable_color = false
# Enable saving and restoring the session when run from CLI
#enable_cli_session = false
# Path to store trajectories, can be a folder or a file
# If it's a folder, the session id will be used as the file name
#save_trajectory_path="./trajectories"
# Path to replay a trajectory, must be a file path
# If provided, trajectory will be loaded and replayed before the
# agent responds to any user instruction
#replay_trajectory_path = ""
# File store path
#file_store_path = "/tmp/file_store"
# File store type
#file_store = "memory"
# List of allowed file extensions for uploads
#file_uploads_allowed_extensions = [".*"]
# Maximum file size for uploads, in megabytes
#file_uploads_max_file_size_mb = 0
# Maximum budget per task, 0.0 means no limit
#max_budget_per_task = 0.0
# Maximum number of iterations
#max_iterations = 100
# Path to mount the workspace in the sandbox
#workspace_mount_path_in_sandbox = "/workspace"
# Path to mount the workspace
#workspace_mount_path = ""
# Path to rewrite the workspace mount path to
#workspace_mount_rewrite = ""
# Run as openhands
#run_as_openhands = true
# Runtime environment
#runtime = "eventstream"
# Name of the default agent
#default_agent = "CodeActAgent"
# JWT secret for authentication
#jwt_secret = ""
# Restrict file types for file uploads
#file_uploads_restrict_file_types = false
# List of allowed file extensions for uploads
#file_uploads_allowed_extensions = [".*"]
#################################### LLM #####################################
# Configuration for LLM models (group name starts with 'llm')
# use 'llm' for the default LLM config
##############################################################################
[llm]
# AWS access key ID
#aws_access_key_id = ""
# AWS region name
#aws_region_name = ""
# AWS secret access key
#aws_secret_access_key = ""
# API key to use (For Headless / CLI only - In Web this is overridden by Session Init)
api_key = "your-api-key"
# API base URL (For Headless / CLI only - In Web this is overridden by Session Init)
#base_url = ""
# API version
#api_version = ""
# Cost per input token
#input_cost_per_token = 0.0
# Cost per output token
#output_cost_per_token = 0.0
# Custom LLM provider
#custom_llm_provider = ""
# Embedding API base URL
#embedding_base_url = ""
# Embedding deployment name
#embedding_deployment_name = ""
# Embedding model to use
embedding_model = "local"
# Maximum number of characters in an observation's content
#max_message_chars = 10000
# Maximum number of input tokens
#max_input_tokens = 0
# Maximum number of output tokens
#max_output_tokens = 0
# Model to use. (For Headless / CLI only - In Web this is overridden by Session Init)
model = "gpt-4o"
# Number of retries to attempt when an operation fails with the LLM.
# Increase this value to allow more attempts before giving up
#num_retries = 8
# Maximum wait time (in seconds) between retry attempts
# This caps the exponential backoff to prevent excessively long
#retry_max_wait = 120
# Minimum wait time (in seconds) between retry attempts
# This sets the initial delay before the first retry
#retry_min_wait = 15
# Multiplier for exponential backoff calculation
# The wait time increases by this factor after each failed attempt
# A value of 2.0 means each retry waits twice as long as the previous one
#retry_multiplier = 2.0
# Drop any unmapped (unsupported) params without causing an exception
#drop_params = false
# Modify params for litellm to do transformations like adding a default message, when a message is empty.
# Note: this setting is global, unlike drop_params, it cannot be overridden in each call to litellm.
#modify_params = true
# Using the prompt caching feature if provided by the LLM and supported
#caching_prompt = true
# Base URL for the OLLAMA API
#ollama_base_url = ""
# Temperature for the API
#temperature = 0.0
# Timeout for the API
#timeout = 0
# Top p for the API
#top_p = 1.0
# If model is vision capable, this option allows to disable image processing (useful for cost reduction).
#disable_vision = true
# Custom tokenizer to use for token counting
# https://docs.litellm.ai/docs/completion/token_usage
#custom_tokenizer = ""
# Whether to use native tool calling if supported by the model. Can be true, false, or None by default, which chooses the model's default behavior based on the evaluation.
# ATTENTION: Based on evaluation, enabling native function calling may lead to worse results
# in some scenarios. Use with caution and consider testing with your specific use case.
# https://github.com/All-Hands-AI/OpenHands/pull/4711
#native_tool_calling = None
[llm.gpt4o-mini]
api_key = "your-api-key"
model = "gpt-4o"
#################################### Agent ###################################
# Configuration for agents (group name starts with 'agent')
# Use 'agent' for the default agent config
# otherwise, group name must be `agent.<agent_name>` (case-sensitive), e.g.
# agent.CodeActAgent
##############################################################################
[agent]
# whether the browsing tool is enabled
codeact_enable_browsing = true
# whether the LLM draft editor is enabled
codeact_enable_llm_editor = false
# whether the IPython tool is enabled
codeact_enable_jupyter = true
# Name of the micro agent to use for this agent
#micro_agent_name = ""
# Memory enabled
#memory_enabled = false
# Memory maximum threads
#memory_max_threads = 3
# LLM config group to use
#llm_config = 'your-llm-config-group'
# Whether to use prompt extension (e.g., microagent, repo/runtime info) at all
#enable_prompt_extensions = true
# List of microagents to disable
#disabled_microagents = []
[agent.RepoExplorerAgent]
# Example: use a cheaper model for RepoExplorerAgent to reduce cost, especially
# useful when an agent doesn't demand high quality but uses a lot of tokens
llm_config = 'gpt3'
#################################### Sandbox ###################################
# Configuration for the sandbox
##############################################################################
[sandbox]
# Sandbox timeout in seconds
#timeout = 120
# Sandbox user ID
#user_id = 1000
# Container image to use for the sandbox
#base_container_image = "nikolaik/python-nodejs:python3.12-nodejs22"
# Use host network
#use_host_network = false
# runtime extra build args
#runtime_extra_build_args = ["--network=host", "--add-host=host.docker.internal:host-gateway"]
# Enable auto linting after editing
#enable_auto_lint = false
# Whether to initialize plugins
#initialize_plugins = true
# Extra dependencies to install in the runtime image
#runtime_extra_deps = ""
# Environment variables to set at the launch of the runtime
#runtime_startup_env_vars = {}
# BrowserGym environment to use for evaluation
#browsergym_eval_env = ""
#################################### Security ###################################
# Configuration for security features
##############################################################################
[security]
# Enable confirmation mode (For Headless / CLI only - In Web this is overridden by Session Init)
#confirmation_mode = false
# The security analyzer to use (For Headless / CLI only - In Web this is overridden by Session Init)
#security_analyzer = ""
#################################### Eval ####################################
# Configuration for the evaluation, please refer to the specific evaluation
# plugin for the available options
##############################################################################
|