Spaces:
Configuration error
Configuration error
File size: 13,965 Bytes
3df612c 60a79e9 3df612c 60a79e9 3df612c 8ef6a7b 60a79e9 3df612c 60a79e9 3df612c 894f870 3df612c 60a79e9 3df612c a83e2a0 3df612c 2b9a581 60a79e9 3225df0 60a79e9 3225df0 60a79e9 3df612c 3dac4eb 3df612c 3225df0 3df612c 2b9a581 3df612c 3225df0 3df612c 3225df0 3df612c 3dac4eb 3df612c 1e1529d 3df612c 1e1529d 3df612c 1e1529d 3df612c 3225df0 3df612c 60a79e9 8ef6a7b 9028f64 3df612c d2a8042 9028f64 51bcba3 3df612c 0a78870 3df612c 0a78870 3df612c 9028f64 d2a8042 3df612c 0a78870 60a79e9 1e1529d c0884a0 8ef6a7b 3dac4eb 1e1529d 60a79e9 3df612c 60a79e9 8ef6a7b 3df612c 3dac4eb 3df612c 894f870 3225df0 3df612c eca366c 3dac4eb 894f870 9028f64 60a79e9 eca366c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
from diffusers import StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline
import torch
from PIL import Image, ImageDraw
import os
import numpy as np
from scipy.io.wavfile import read
import gradio as gr
from share_btn import community_icon_html, loading_icon_html, share_js
os.system('git clone https://github.com/hmartiro/riffusion-inference.git riffusion')
from riffusion.riffusion.riffusion_pipeline import RiffusionPipeline
from riffusion.riffusion.datatypes import PromptInput, InferenceInput
from riffusion.riffusion.audio import wav_bytes_from_spectrogram_image
from PIL import Image
import struct
import random
repo_id = "riffusion/riffusion-model-v1"
model = RiffusionPipeline.from_pretrained(
repo_id,
revision="main",
torch_dtype=torch.float16,
safety_checker=lambda images, **kwargs: (images, False),
)
if torch.cuda.is_available():
model.to("cuda")
model.enable_xformers_memory_efficient_attention()
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, safety_checker=lambda images, **kwargs: (images, False),)
pipe_inpaint.scheduler = DPMSolverMultistepScheduler.from_config(pipe_inpaint.scheduler.config)
# pipe_inpaint.enable_xformers_memory_efficient_attention()
if torch.cuda.is_available():
pipe_inpaint = pipe_inpaint.to("cuda")
pipe_inpaint.enable_xformers_memory_efficient_attention()
def get_init_image(image, overlap, feel):
width, height = image.size
init_image = Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB")
# Crop the right side of the original image with `overlap_width`
cropped_img = image.crop((width - int(width*overlap), 0, width, height))
init_image.paste(cropped_img, (0, 0))
return init_image
def get_mask(image, overlap):
width, height = image.size
mask = Image.new("RGB", (width, height), color="white")
draw = ImageDraw.Draw(mask)
draw.rectangle((0, 0, int(overlap * width), height), fill="black")
return mask
def i2i(prompt, steps, feel, seed):
# return pipe_i2i(
# prompt,
# num_inference_steps=steps,
# image=Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB"),
# ).images[0]
prompt_input_start = PromptInput(prompt=prompt, seed=seed)
prompt_input_end = PromptInput(prompt=prompt, seed=seed)
return model.riffuse(
inputs=InferenceInput(
start=prompt_input_start,
end=prompt_input_end,
alpha=1.0,
num_inference_steps=steps),
init_image=Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB")
)
def outpaint(prompt, init_image, mask, steps):
return pipe_inpaint(
prompt,
num_inference_steps=steps,
image=init_image,
mask_image=mask,
).images[0]
def generate(prompt, steps, num_iterations, feel, seed):
if seed == 0:
seed = random.randint(0,4294967295)
num_images = num_iterations
overlap = 0.5
image_width, image_height = 512, 512 # dimensions of each output image
total_width = num_images * image_width - (num_images - 1) * int(overlap * image_width) # total width of the stitched image
# Create a blank image with the desired dimensions
stitched_image = Image.new("RGB", (total_width, image_height), color="white")
# Initialize the x position for pasting the next image
x_pos = 0
image = i2i(prompt, steps, feel, seed)
for i in range(num_images):
# Generate the prompt, initial image, and mask for this iteration
init_image = get_init_image(image, overlap, feel)
mask = get_mask(init_image, overlap)
# Run the outpaint function to generate the output image
steps = 25
image = outpaint(prompt, init_image, mask, steps)
# Paste the output image onto the stitched image
stitched_image.paste(image, (x_pos, 0))
# Update the x position for the next iteration
x_pos += int((1 - overlap) * image_width)
wav_bytes, duration_s = wav_bytes_from_spectrogram_image(stitched_image)
# mask = Image.new("RGB", (512, 512), color="white")
# bg_image = outpaint(prompt, init_image, mask, steps)
# bg_image.save("bg_image.png")
init_image.save("bg_image.png")
# return read(wav_bytes)
with open("output.wav", "wb") as f:
f.write(wav_bytes.read())
return gr.make_waveform("output.wav", bg_image="bg_image.png", bar_count=int(duration_s*25))
###############################################
def riffuse(steps, feel, init_image, prompt_start, seed_start, denoising_start=0.75, guidance_start=7.0, prompt_end=None, seed_end=None, denoising_end=0.75, guidance_end=7.0, alpha=0.5):
prompt_input_start = PromptInput(prompt=prompt_start, seed=seed_start, denoising=denoising_start, guidance=guidance_start)
prompt_input_end = PromptInput(prompt=prompt_end, seed=seed_end, denoising=denoising_end, guidance=guidance_end)
input = InferenceInput(
start=prompt_input_start,
end=prompt_input_end,
alpha=alpha,
num_inference_steps=steps,
seed_image_id=feel,
# mask_image_id="mask_beat_lines_80.png"
)
image = model.riffuse(inputs=input, init_image=init_image)
wav_bytes, duration_s = wav_bytes_from_spectrogram_image(image)
return wav_bytes, image
def generate_riffuse(prompt_start, steps, num_iterations, feel, prompt_end=None, seed_start=None, seed_end=None, denoising_start=0.75, denoising_end=0.75, guidance_start=7.0, guidance_end=7.0):
"""Generate a WAV file of length seconds using the Riffusion model.
Args:
length (int): Length of the WAV file in seconds, must be divisible by 5.
prompt_start (str): Prompt to start with.
prompt_end (str, optional): Prompt to end with. Defaults to prompt_start.
overlap (float, optional): Overlap between audio clips as a fraction of the image size. Defaults to 0.2.
"""
# open the initial image and convert it to RGB
init_image = Image.open(f"riffusion/seed_images/{feel}.png").convert("RGB")
if prompt_end is None:
prompt_end = prompt_start
if seed_start == 0:
seed_start = random.randint(0,4294967295)
if seed_end is None:
seed_end = seed_start
# one riffuse() generates 5 seconds of audio
wav_list = []
for i in range(int(num_iterations)):
alpha = i / (num_iterations - 1)
print(alpha)
wav_bytes, image = riffuse(steps, feel, init_image, prompt_start, seed_start, denoising_start, guidance_start, prompt_end, seed_end, denoising_end, guidance_end, alpha=alpha)
wav_list.append(wav_bytes)
init_image = image
seed_start = seed_end
seed_end = seed_start + 1
# return read(wav_bytes)
# return wav_list_to_wav(wav_list)
# mask = Image.new("RGB", (512, 512), color="white")
# bg_image = outpaint(f"{prompt_start} and {prompt_end}", init_image, mask, steps)
# bg_image.save("bg_image.png")
init_image.save("bg_image.png")
with open("output.wav", "wb") as f:
f.write(wav_list_to_wav(wav_list))
return gr.make_waveform("output.wav", bg_image="bg_image.png")
def wav_list_to_wav(wav_list):
# remove headers from the WAV files
data = [wav.read()[44:] for wav in wav_list]
# concatenate the data
concatenated_data = b"".join(data)
# create a new RIFF header
channels = 1
sample_rate = 44100
bytes_per_second = channels * sample_rate
new_header = struct.pack("<4sI4s4sIHHIIHH4sI", b"RIFF", len(concatenated_data) + 44 - 8, b"WAVE", b"fmt ", 16, 1, channels, sample_rate, bytes_per_second, 2, 16, b"data", len(concatenated_data))
# combine the header and data to create the final WAV file
final_wav = new_header + concatenated_data
return final_wav
###############################################
def on_submit(prompt_1, prompt_2, feel, num_iterations, steps=25, seed=0):
if prompt_1 == "":
return None, gr.update(value="First prompt is required."), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
if prompt_2 == "":
return generate(prompt_1, steps, num_iterations, feel, seed), None, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
else:
return generate_riffuse(prompt_1, steps, num_iterations, feel, prompt_end=prompt_2, seed_start=seed), None, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
def on_num_iterations_change(n, prompt_2):
if n is None:
return gr.update(value="")
if prompt_2 != "":
total_length = 5 * n
else:
total_length = 2.5 + 2.5 * n
return gr.update(value=f"Total length: {total_length:.2f} seconds")
css = '''
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
'''
with gr.Blocks(css=css) as app:
gr.Markdown("## Riffusion Demo")
gr.Markdown("""Generate audio using the [Riffusion](https://huggingface.co./riffusion/riffusion-model-v1) model.<br>
In single prompt mode you can generate up to ~1 minute of audio with smooth transitions between sections. (beta)<br>
Bi-prompt mode interpolates between two prompts. It can generate up to ~2 minutes of audio, but transitions between sections are more abrupt.""")
gr.Markdown(f"""Running on {"**GPU 🔥**" if torch.cuda.is_available() else f"**CPU 🥶**. For faster inference it is recommended to **upgrade to GPU in space's Settings**"}<br>
[![Duplicate Space](https://bit.ly/3gLdBN6)](https://huggingface.co./spaces/anzorq/riffusion-demo?duplicate=true)""")
with gr.Row():
with gr.Group():
with gr.Row():
prompt_1 = gr.Textbox(lines=1, label="Start from", placeholder="Starting prompt", elem_id="riff-prompt_1")
prompt_2 = gr.Textbox(lines=1, label="End with (optional)", placeholder="Prompt to shift towards at the end", elem_id="riff-prompt_2")
with gr.Row():
steps = gr.Slider(minimum=1, maximum=100, value=25, label="Steps per section")
num_iterations = gr.Slider(minimum=2, maximum=25, value=2, step=1, label="Number of sections")
with gr.Row():
feel = gr.Dropdown(["og_beat", "agile", "vibes", "motorway", "marim"], value="og_beat", label="Feel", elem_id="riff-feel")
seed = gr.Slider(minimum=0, maximum=4294967295, value=0, step=1, label="Seed (0 for random)", elem_id="riff-seed")
btn_generate = gr.Button(value="Generate").style(full_width=True)
info = gr.Markdown()
with gr.Column():
video = gr.Video(elem_id="riff-video")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, elem_id="share-btn-share-icon", visible=False)
loading_icon = gr.HTML(loading_icon_html, elem_id="share-btn-loading-icon", visible=False)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
inputs = [prompt_1, prompt_2, feel, num_iterations, steps, seed]
outputs = [video, info, community_icon, loading_icon, share_button]
num_iterations.change(on_num_iterations_change, [num_iterations, prompt_2], [info])
prompt_1.submit(on_submit, inputs, outputs)
prompt_2.submit(on_submit, inputs, outputs)
btn_generate.click(on_submit, inputs, outputs)
share_button.click(None, [], [], _js=share_js)
examples = gr.Examples(
fn=on_submit,
examples=[
["typing", "dance beat", "og_beat", 10],
["synthwave", "jazz", "agile", 10],
["rap battle freestyle", "", "og_beat", 10],
# ["techno club banger", "", "og_beat", 10],
["reggae dub beat", "sunset chill", "og_beat", 10],
["acoustic folk ballad", "", "agile", 10],
["blues guitar riff", "", "agile", 5],
["jazzy trumpet solo", "", "og_beat", 5],
["classical symphony orchestra", "", "vibes", 10],
["rock and roll power chord", "", "motorway", 5],
["soulful R&B love song", "", "marim", 10],
["country western twangy guitar", "", "agile", 10]],
inputs=[prompt_1, prompt_2, feel, num_iterations],
outputs=outputs,
cache_examples=True)
gr.HTML("""
<div style="border-top: 1px solid #303030;">
<br>
<p>Space by:<br>
<a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
<a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br>
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 24px !important;width: 81px !important;" ></a><br><br>
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.riffusion-demo" alt="visitors"></p>
</div>
""")
app.queue(max_size=250, concurrency_count=6).launch()
|