Omnibus commited on
Commit
ee8a74c
·
1 Parent(s): 80c8939

Update app.py

Browse files

Changing "torch_dtype=torch.float16" to "torch.get_default_dtype()" provides compatibility with the free CPU on Huggingface.co
The renders take hundreds of minutes on the CPU, and generating more than one image at a time causes a connection error.
The image quality is excellent.

Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -54,7 +54,7 @@ current_model_path = current_model.path
54
  if is_colab:
55
  pipe = StableDiffusionPipeline.from_pretrained(
56
  current_model.path,
57
- torch_dtype=torch.float16,
58
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
59
  safety_checker=lambda images, clip_input: (images, False)
60
  )
@@ -62,7 +62,7 @@ if is_colab:
62
  else:
63
  pipe = StableDiffusionPipeline.from_pretrained(
64
  current_model.path,
65
- torch_dtype=torch.float16,
66
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
67
  )
68
 
@@ -120,14 +120,14 @@ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width,
120
  if is_colab or current_model == custom_model:
121
  pipe = StableDiffusionPipeline.from_pretrained(
122
  current_model_path,
123
- torch_dtype=torch.float16,
124
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
125
  safety_checker=lambda images, clip_input: (images, False)
126
  )
127
  else:
128
  pipe = StableDiffusionPipeline.from_pretrained(
129
  current_model_path,
130
- torch_dtype=torch.float16,
131
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
132
  )
133
  # pipe = pipe.to("cpu")
@@ -164,14 +164,14 @@ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance
164
  if is_colab or current_model == custom_model:
165
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
166
  current_model_path,
167
- torch_dtype=torch.float16,
168
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
169
  safety_checker=lambda images, clip_input: (images, False)
170
  )
171
  else:
172
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
173
  current_model_path,
174
- torch_dtype=torch.float16,
175
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
176
  )
177
  # pipe = pipe.to("cpu")
 
54
  if is_colab:
55
  pipe = StableDiffusionPipeline.from_pretrained(
56
  current_model.path,
57
+ torch_dtype=torch.get_default_dtype(),
58
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
59
  safety_checker=lambda images, clip_input: (images, False)
60
  )
 
62
  else:
63
  pipe = StableDiffusionPipeline.from_pretrained(
64
  current_model.path,
65
+ torch_dtype=torch.get_default_dtype(),
66
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
67
  )
68
 
 
120
  if is_colab or current_model == custom_model:
121
  pipe = StableDiffusionPipeline.from_pretrained(
122
  current_model_path,
123
+ torch_dtype=torch.get_default_dtype(),
124
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
125
  safety_checker=lambda images, clip_input: (images, False)
126
  )
127
  else:
128
  pipe = StableDiffusionPipeline.from_pretrained(
129
  current_model_path,
130
+ torch_dtype=torch.get_default_dtype(),
131
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
132
  )
133
  # pipe = pipe.to("cpu")
 
164
  if is_colab or current_model == custom_model:
165
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
166
  current_model_path,
167
+ torch_dtype=torch.get_default_dtype(),
168
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
169
  safety_checker=lambda images, clip_input: (images, False)
170
  )
171
  else:
172
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
173
  current_model_path,
174
+ torch_dtype=torch.get_default_dtype(),
175
  scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
176
  )
177
  # pipe = pipe.to("cpu")