Spaces:
Runtime error
Runtime error
File size: 1,276 Bytes
8d8cf1e 4936f95 8d8cf1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
import librosa
from transformers import AutoFeatureExtractor, pipeline
def load_and_fix_data(input_file, model_sampling_rate):
speech, sample_rate = librosa.load(input_file)
if len(speech.shape) > 1:
speech = speech[:, 0] + speech[:, 1]
if sample_rate != model_sampling_rate:
speech = librosa.resample(speech, sample_rate, model_sampling_rate)
return speech
feature_extractor = AutoFeatureExtractor.from_pretrained(
"anuragshas/wav2vec2-xls-r-1b-hi-with-lm"
)
sampling_rate = feature_extractor.sampling_rate
asr = pipeline(
"automatic-speech-recognition", model="anuragshas/wav2vec2-xls-r-1b-hi-with-lm"
)
def predict_and_ctc_lm_decode(input_file):
speech = load_and_fix_data(input_file, sampling_rate)
transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1)
return transcribed_text["text"]
gr.Interface(
predict_and_ctc_lm_decode,
inputs=[
gr.inputs.Audio(
source="microphone", type="filepath", label="Record/ Drop audio"
)
],
outputs=[gr.outputs.Textbox()],
title="Hindi ASR using Wav2Vec2-1B with LM",
description="Built during Robust Speech Event",
layout="horizontal",
theme="huggingface",
).launch(enable_queue=True)
|