Spaces:
Sleeping
Sleeping
File size: 7,413 Bytes
bacf16b 64e42c0 de5608c 82579ab 73cfaa5 bacf16b 82579ab 73cfaa5 64e42c0 bacf16b 64e42c0 bacf16b 64e42c0 bacf16b 64e42c0 bacf16b 64e42c0 bacf16b 64e42c0 bacf16b 82579ab 73cfaa5 bacf16b 82579ab bacf16b 82579ab de5608c 82579ab 73cfaa5 64e42c0 82579ab bacf16b 64e42c0 bacf16b de5608c bacf16b de5608c bacf16b 82579ab bacf16b de5608c bacf16b de5608c 73cfaa5 de5608c 73cfaa5 de5608c 73cfaa5 de5608c 73cfaa5 de5608c 73cfaa5 82579ab de5608c bacf16b de5608c bacf16b de5608c bacf16b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import sys
import os
import pickle
import gzip
from pathlib import Path
import numpy as np
import torch
from scipy import stats
from gluformer.model import Gluformer
from utils.darts_processing import *
from utils.darts_dataset import *
import hashlib
from urllib.parse import urlparse
from huggingface_hub import hf_hub_download
import plotly.graph_objects as go
import gradio as gr
from format_dexcom import *
from typing import Tuple, Union, List
from plotly.graph_objs._figure import Figure
from gradio.components import Slider
from gradio.components import Markdown
glucose = Path(os.path.abspath(__file__)).parent.resolve()
file_directory = glucose / "files"
def plot_forecast(forecasts: np.ndarray, filename: str,ind:int=10) -> Tuple[Path, Figure]:
forecasts = (forecasts - scalers['target'].min_) / scalers['target'].scale_
trues = [dataset_test_glufo.evalsample(i) for i in range(len(dataset_test_glufo))]
trues = scalers['target'].inverse_transform(trues)
trues = [ts.values() for ts in trues] # Convert TimeSeries to numpy arrays
trues = np.array(trues)
inputs = [dataset_test_glufo[i][0] for i in range(len(dataset_test_glufo))]
inputs = (np.array(inputs) - scalers['target'].min_) / scalers['target'].scale_
# Select a specific sample to plot
samples = np.random.normal(
loc=forecasts[ind, :], # Mean (center) of the distribution
scale=0.1, # Standard deviation (spread) of the distribution
size=(forecasts.shape[1], forecasts.shape[2])
)
# Create figure
fig = go.Figure()
# Plot predictive distribution
for point in range(samples.shape[0]):
kde = stats.gaussian_kde(samples[point,:])
maxi, mini = 1.2 * np.max(samples[point, :]), 0.8 * np.min(samples[point, :])
y_grid = np.linspace(mini, maxi, 200)
x = kde(y_grid)
# Create gradient color
color = f'rgba(53, 138, 217, {(point + 1) / samples.shape[0]})'
# Add filled area
fig.add_trace(go.Scatter(
x=np.concatenate([np.full_like(y_grid, point), np.full_like(y_grid, point - x * 15)[::-1]]),
y=np.concatenate([y_grid, y_grid[::-1]]),
fill='tonexty',
fillcolor=color,
line=dict(color='rgba(0,0,0,0)'),
showlegend=False
))
true_values = np.concatenate([inputs[ind, -12:], trues[ind, :]])
true_values_flat=true_values.flatten()
fig.add_trace(go.Scatter(
x=list(range(-12, 12)),
y=true_values_flat.tolist(), # Convert to list explicitly
mode='lines+markers',
line=dict(color='blue', width=2),
marker=dict(size=6),
name='True Values'
))
# Plot median
forecast = samples[:, :]
median = np.quantile(forecast, 0.5, axis=-1)
fig.add_trace(go.Scatter(
x=list(range(12)),
y=median.tolist(), # Convert to list explicitly
mode='lines+markers',
line=dict(color='red', width=2),
marker=dict(size=8),
name='Median Forecast'
))
# Update layout
fig.update_layout(
title='Gluformer Prediction with Gradient for dataset',
xaxis_title='Time (in 5 minute intervals)',
yaxis_title='Glucose (mg/dL)',
font=dict(size=14),
showlegend=True,
width=1000,
height=600
)
# Save figure
where = file_directory / filename
fig.write_html(str(where.with_suffix('.html')))
fig.write_image(str(where))
return where, fig
def generate_filename_from_url(url: str, extension: str = "png") -> str:
"""
:param url:
:param extension:
:return:
"""
# Extract the last segment of the URL
last_segment = urlparse(url).path.split('/')[-1]
# Compute the hash of the URL
url_hash = hashlib.md5(url.encode('utf-8')).hexdigest()
# Create the filename
filename = f"{last_segment.replace('.','_')}_{url_hash}.{extension}"
return filename
glufo = None
scalers = None
dataset_test_glufo = None
filename = None
def prep_predict_glucose_tool(file: Union[str, Path], model_name: str = "gluformer_1samples_10000epochs_10heads_32batch_geluactivation_livia_mini_weights.pth") -> Tuple[Slider, Markdown]:
"""
Function to predict future glucose of user.
"""
global formatter, series, scalers, glufo, dataset_test_glufo, filename
model = "Livia-Zaharia/gluformer_models"
model_path = hf_hub_download(repo_id=model, filename=model_name)
formatter, series, scalers = load_data(
url=str(file),
config_path=file_directory / "config.yaml",
use_covs=True,
cov_type='dual',
use_static_covs=True
)
formatter.params['gluformer'] = {
'in_len': 96, # example input length, adjust as necessary
'd_model': 512, # model dimension
'n_heads': 10, # number of attention heads########################
'd_fcn': 1024, # fully connected layer dimension
'num_enc_layers': 2, # number of encoder layers
'num_dec_layers': 2, # number of decoder layers
'length_pred': 12 # prediction length, adjust as necessary represents 1 h
}
num_dynamic_features = series['train']['future'][-1].n_components
num_static_features = series['train']['static'][-1].n_components
global glufo
glufo = Gluformer(
d_model=formatter.params['gluformer']['d_model'],
n_heads=formatter.params['gluformer']['n_heads'],
d_fcn=formatter.params['gluformer']['d_fcn'],
r_drop=0.2,
activ='gelu',
num_enc_layers=formatter.params['gluformer']['num_enc_layers'],
num_dec_layers=formatter.params['gluformer']['num_dec_layers'],
distil=True,
len_seq=formatter.params['gluformer']['in_len'],
label_len=formatter.params['gluformer']['in_len'] // 3,
len_pred=formatter.params['length_pred'],
num_dynamic_features=num_dynamic_features,
num_static_features=num_static_features
)
device = "cuda" if torch.cuda.is_available() else "cpu"
glufo.load_state_dict(torch.load(str(model_path), map_location=torch.device(device)))
global dataset_test_glufo
dataset_test_glufo = SamplingDatasetInferenceDual(
target_series=series['test']['target'],
covariates=series['test']['future'],
input_chunk_length=formatter.params['gluformer']['in_len'],
output_chunk_length=formatter.params['length_pred'],
use_static_covariates=True,
array_output_only=True
)
global filename
filename = generate_filename_from_url(file)
max_index = len(dataset_test_glufo) - 1
print(f"Total number of test samples: {max_index + 1}")
return (
gr.Slider(
minimum=0,
maximum=max_index-1,
value=max_index,
step=1,
label="Select Sample Index",
visible=True
),
gr.Markdown(f"Total number of test samples: {max_index + 1}", visible=True)
)
def predict_glucose_tool(ind: int) -> Figure:
device = "cuda" if torch.cuda.is_available() else "cpu"
forecasts, _ = glufo.predict(
dataset_test_glufo,
batch_size=16,#######
num_samples=10,
device=device
)
figure_path, result = plot_forecast(forecasts,filename,ind)
return result
|