Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
from transformers import CamembertModel | |
class CamembertRegressor(nn.Module): | |
def __init__(self, drop_rate=0.2, freeze_camembert=True): | |
super(CamembertRegressor, self).__init__() | |
D_in, D_out = 768, 1 | |
self.camembert = CamembertModel.from_pretrained('camembert-base') | |
self.regressor = nn.Sequential( | |
nn.Dropout(drop_rate), | |
nn.Linear(D_in, D_out)) | |
if freeze_camembert: | |
for param in self.camembert.parameters(): | |
param.requires_grad = False | |
def forward(self, input_ids, attention_masks): | |
outputs = self.camembert(input_ids, attention_masks) | |
outputs_cls = outputs[1] | |
outputs = self.regressor(outputs_cls) | |
return outputs | |