File size: 25,978 Bytes
4943752 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
"""
TrainingArgs Class
==================
"""
from dataclasses import dataclass, field
import datetime
import os
from typing import Union
from textattack.datasets import HuggingFaceDataset
from textattack.models.helpers import LSTMForClassification, WordCNNForClassification
from textattack.models.wrappers import (
HuggingFaceModelWrapper,
ModelWrapper,
PyTorchModelWrapper,
)
from textattack.shared import logger
from textattack.shared.utils import ARGS_SPLIT_TOKEN
from .attack import Attack
from .attack_args import ATTACK_RECIPE_NAMES
def default_output_dir():
return os.path.join(
"./outputs", datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S-%f")
)
@dataclass
class TrainingArgs:
"""Arguments for ``Trainer`` class that is used for adversarial training.
Args:
num_epochs (:obj:`int`, `optional`, defaults to :obj:`3`):
Total number of epochs for training.
num_clean_epochs (:obj:`int`, `optional`, defaults to :obj:`1`):
Number of epochs to train on just the original training dataset before adversarial training.
attack_epoch_interval (:obj:`int`, `optional`, defaults to :obj:`1`):
Generate a new adversarial training set every `N` epochs.
early_stopping_epochs (:obj:`int`, `optional`, defaults to :obj:`None`):
Number of epochs validation must increase before stopping early (:obj:`None` for no early stopping).
learning_rate (:obj:`float`, `optional`, defaults to :obj:`5e-5`):
Learning rate for optimizer.
num_warmup_steps (:obj:`int` or :obj:`float`, `optional`, defaults to :obj:`500`):
The number of steps for the warmup phase of linear scheduler.
If :obj:`num_warmup_steps` is a :obj:`float` between 0 and 1, the number of warmup steps will be :obj:`math.ceil(num_training_steps * num_warmup_steps)`.
weight_decay (:obj:`float`, `optional`, defaults to :obj:`0.01`):
Weight decay (L2 penalty).
per_device_train_batch_size (:obj:`int`, `optional`, defaults to :obj:`8`):
The batch size per GPU/CPU for training.
per_device_eval_batch_size (:obj:`int`, `optional`, defaults to :obj:`32`):
The batch size per GPU/CPU for evaluation.
gradient_accumulation_steps (:obj:`int`, `optional`, defaults to :obj:`1`):
Number of updates steps to accumulate the gradients before performing a backward/update pass.
random_seed (:obj:`int`, `optional`, defaults to :obj:`786`):
Random seed for reproducibility.
parallel (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`True`, train using multiple GPUs using :obj:`torch.DataParallel`.
load_best_model_at_end (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`True`, keep track of the best model across training and load it at the end.
alpha (:obj:`float`, `optional`, defaults to :obj:`1.0`):
The weight for adversarial loss.
num_train_adv_examples (:obj:`int` or :obj:`float`, `optional`, defaults to :obj:`-1`):
The number of samples to successfully attack when generating adversarial training set before start of every epoch.
If :obj:`num_train_adv_examples` is a :obj:`float` between 0 and 1, the number of adversarial examples generated is
fraction of the original training set.
query_budget_train (:obj:`int`, `optional`, defaults to :obj:`None`):
The max query budget to use when generating adversarial training set. :obj:`None` means infinite query budget.
attack_num_workers_per_device (:obj:`int`, defaults to `optional`, :obj:`1`):
Number of worker processes to run per device for attack. Same as :obj:`num_workers_per_device` argument for :class:`~textattack.AttackArgs`.
output_dir (:obj:`str`, `optional`):
Directory to output training logs and checkpoints. Defaults to :obj:`./outputs/%Y-%m-%d-%H-%M-%S-%f` format.
checkpoint_interval_steps (:obj:`int`, `optional`, defaults to :obj:`None`):
If set, save model checkpoint after every `N` updates to the model.
checkpoint_interval_epochs (:obj:`int`, `optional`, defaults to :obj:`None`):
If set, save model checkpoint after every `N` epochs.
save_last (:obj:`bool`, `optional`, defaults to :obj:`True`):
If :obj:`True`, save the model at end of training. Can be used with :obj:`load_best_model_at_end` to save the best model at the end.
log_to_tb (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`True`, log to Tensorboard.
tb_log_dir (:obj:`str`, `optional`, defaults to :obj:`"./runs"`):
Path of Tensorboard log directory.
log_to_wandb (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`True`, log to Wandb.
wandb_project (:obj:`str`, `optional`, defaults to :obj:`"textattack"`):
Name of Wandb project for logging.
logging_interval_step (:obj:`int`, `optional`, defaults to :obj:`1`):
Log to Tensorboard/Wandb every `N` training steps.
"""
num_epochs: int = 3
num_clean_epochs: int = 1
attack_epoch_interval: int = 1
early_stopping_epochs: int = None
learning_rate: float = 5e-5
num_warmup_steps: Union[int, float] = 500
weight_decay: float = 0.01
per_device_train_batch_size: int = 8
per_device_eval_batch_size: int = 32
gradient_accumulation_steps: int = 1
random_seed: int = 786
parallel: bool = False
load_best_model_at_end: bool = False
alpha: float = 1.0
num_train_adv_examples: Union[int, float] = -1
query_budget_train: int = None
attack_num_workers_per_device: int = 1
output_dir: str = field(default_factory=default_output_dir)
checkpoint_interval_steps: int = None
checkpoint_interval_epochs: int = None
save_last: bool = True
log_to_tb: bool = False
tb_log_dir: str = None
log_to_wandb: bool = False
wandb_project: str = "textattack"
logging_interval_step: int = 1
def __post_init__(self):
assert self.num_epochs > 0, "`num_epochs` must be greater than 0."
assert (
self.num_clean_epochs >= 0
), "`num_clean_epochs` must be greater than or equal to 0."
if self.early_stopping_epochs is not None:
assert (
self.early_stopping_epochs > 0
), "`early_stopping_epochs` must be greater than 0."
if self.attack_epoch_interval is not None:
assert (
self.attack_epoch_interval > 0
), "`attack_epoch_interval` must be greater than 0."
assert (
self.num_warmup_steps >= 0
), "`num_warmup_steps` must be greater than or equal to 0."
assert (
self.gradient_accumulation_steps > 0
), "`gradient_accumulation_steps` must be greater than 0."
assert (
self.num_clean_epochs <= self.num_epochs
), f"`num_clean_epochs` cannot be greater than `num_epochs` ({self.num_clean_epochs} > {self.num_epochs})."
if isinstance(self.num_train_adv_examples, float):
assert (
self.num_train_adv_examples >= 0.0
and self.num_train_adv_examples <= 1.0
), "If `num_train_adv_examples` is float, it must be between 0 and 1."
elif isinstance(self.num_train_adv_examples, int):
assert (
self.num_train_adv_examples > 0 or self.num_train_adv_examples == -1
), "If `num_train_adv_examples` is int, it must be greater than 0 or equal to -1."
else:
raise TypeError(
"`num_train_adv_examples` must be of either type `int` or `float`."
)
@classmethod
def _add_parser_args(cls, parser):
"""Add listed args to command line parser."""
default_obj = cls()
def int_or_float(v):
try:
return int(v)
except ValueError:
return float(v)
parser.add_argument(
"--num-epochs",
"--epochs",
type=int,
default=default_obj.num_epochs,
help="Total number of epochs for training.",
)
parser.add_argument(
"--num-clean-epochs",
type=int,
default=default_obj.num_clean_epochs,
help="Number of epochs to train on the clean dataset before adversarial training (N/A if --attack unspecified)",
)
parser.add_argument(
"--attack-epoch-interval",
type=int,
default=default_obj.attack_epoch_interval,
help="Generate a new adversarial training set every N epochs.",
)
parser.add_argument(
"--early-stopping-epochs",
type=int,
default=default_obj.early_stopping_epochs,
help="Number of epochs validation must increase before stopping early (-1 for no early stopping)",
)
parser.add_argument(
"--learning-rate",
"--lr",
type=float,
default=default_obj.learning_rate,
help="Learning rate for Adam Optimization.",
)
parser.add_argument(
"--num-warmup-steps",
type=int_or_float,
default=default_obj.num_warmup_steps,
help="The number of steps for the warmup phase of linear scheduler.",
)
parser.add_argument(
"--weight-decay",
type=float,
default=default_obj.weight_decay,
help="Weight decay (L2 penalty).",
)
parser.add_argument(
"--per-device-train-batch-size",
type=int,
default=default_obj.per_device_train_batch_size,
help="The batch size per GPU/CPU for training.",
)
parser.add_argument(
"--per-device-eval-batch-size",
type=int,
default=default_obj.per_device_eval_batch_size,
help="The batch size per GPU/CPU for evaluation.",
)
parser.add_argument(
"--gradient-accumulation-steps",
type=int,
default=default_obj.gradient_accumulation_steps,
help="Number of updates steps to accumulate the gradients for, before performing a backward/update pass.",
)
parser.add_argument(
"--random-seed",
type=int,
default=default_obj.random_seed,
help="Random seed.",
)
parser.add_argument(
"--parallel",
action="store_true",
default=default_obj.parallel,
help="If set, run training on multiple GPUs.",
)
parser.add_argument(
"--load-best-model-at-end",
action="store_true",
default=default_obj.load_best_model_at_end,
help="If set, keep track of the best model across training and load it at the end.",
)
parser.add_argument(
"--alpha",
type=float,
default=1.0,
help="The weight of adversarial loss.",
)
parser.add_argument(
"--num-train-adv-examples",
type=int_or_float,
default=default_obj.num_train_adv_examples,
help="The number of samples to attack when generating adversarial training set. Default is -1 (which is all possible samples).",
)
parser.add_argument(
"--query-budget-train",
type=int,
default=default_obj.query_budget_train,
help="The max query budget to use when generating adversarial training set.",
)
parser.add_argument(
"--attack-num-workers-per-device",
type=int,
default=default_obj.attack_num_workers_per_device,
help="Number of worker processes to run per device for attack. Same as `num_workers_per_device` argument for `AttackArgs`.",
)
parser.add_argument(
"--output-dir",
type=str,
default=default_output_dir(),
help="Directory to output training logs and checkpoints.",
)
parser.add_argument(
"--checkpoint-interval-steps",
type=int,
default=default_obj.checkpoint_interval_steps,
help="Save model checkpoint after every N updates to the model.",
)
parser.add_argument(
"--checkpoint-interval-epochs",
type=int,
default=default_obj.checkpoint_interval_epochs,
help="Save model checkpoint after every N epochs.",
)
parser.add_argument(
"--save-last",
action="store_true",
default=default_obj.save_last,
help="If set, save the model at end of training. Can be used with `--load-best-model-at-end` to save the best model at the end.",
)
parser.add_argument(
"--log-to-tb",
action="store_true",
default=default_obj.log_to_tb,
help="If set, log to Tensorboard",
)
parser.add_argument(
"--tb-log-dir",
type=str,
default=default_obj.tb_log_dir,
help="Path of Tensorboard log directory.",
)
parser.add_argument(
"--log-to-wandb",
action="store_true",
default=default_obj.log_to_wandb,
help="If set, log to Wandb.",
)
parser.add_argument(
"--wandb-project",
type=str,
default=default_obj.wandb_project,
help="Name of Wandb project for logging.",
)
parser.add_argument(
"--logging-interval-step",
type=int,
default=default_obj.logging_interval_step,
help="Log to Tensorboard/Wandb every N steps.",
)
return parser
@dataclass
class _CommandLineTrainingArgs:
"""Command line interface training args.
This requires more arguments to create models and get datasets.
Args:
model_name_or_path (str): Name or path of the model we want to create. "lstm" and "cnn" will create TextAttack\'s LSTM and CNN models while
any other input will be used to create Transformers model. (e.g."brt-base-uncased").
attack (str): Attack recipe to use (enables adversarial training)
dataset (str): dataset for training; will be loaded from `datasets` library.
task_type (str): Type of task model is supposed to perform. Options: `classification`, `regression`.
model_max_length (int): The maximum sequence length of the model.
model_num_labels (int): The number of labels for classification (1 for regression).
dataset_train_split (str): Name of the train split. If not provided will try `train` as the split name.
dataset_eval_split (str): Name of the train split. If not provided will try `dev`, `validation`, or `eval` as split name.
"""
model_name_or_path: str
attack: str
dataset: str
task_type: str = "classification"
model_max_length: int = None
model_num_labels: int = None
dataset_train_split: str = None
dataset_eval_split: str = None
filter_train_by_labels: list = None
filter_eval_by_labels: list = None
@classmethod
def _add_parser_args(cls, parser):
# Arguments that are needed if we want to create a model to train.
parser.add_argument(
"--model-name-or-path",
"--model",
type=str,
required=True,
help='Name or path of the model we want to create. "lstm" and "cnn" will create TextAttack\'s LSTM and CNN models while'
' any other input will be used to create Transformers model. (e.g."brt-base-uncased").',
)
parser.add_argument(
"--model-max-length",
type=int,
default=None,
help="The maximum sequence length of the model.",
)
parser.add_argument(
"--model-num-labels",
type=int,
default=None,
help="The number of labels for classification.",
)
parser.add_argument(
"--attack",
type=str,
required=False,
default=None,
help="Attack recipe to use (enables adversarial training)",
)
parser.add_argument(
"--task-type",
type=str,
default="classification",
help="Type of task model is supposed to perform. Options: `classification`, `regression`.",
)
parser.add_argument(
"--dataset",
type=str,
required=True,
default="yelp",
help="dataset for training; will be loaded from "
"`datasets` library. if dataset has a subset, separate with a colon. "
" ex: `glue^sst2` or `rotten_tomatoes`",
)
parser.add_argument(
"--dataset-train-split",
type=str,
default="",
help="train dataset split, if non-standard "
"(can automatically detect 'train'",
)
parser.add_argument(
"--dataset-eval-split",
type=str,
default="",
help="val dataset split, if non-standard "
"(can automatically detect 'dev', 'validation', 'eval')",
)
parser.add_argument(
"--filter-train-by-labels",
nargs="+",
type=int,
required=False,
default=None,
help="List of labels to keep in the train dataset and discard all others.",
)
parser.add_argument(
"--filter-eval-by-labels",
nargs="+",
type=int,
required=False,
default=None,
help="List of labels to keep in the eval dataset and discard all others.",
)
return parser
@classmethod
def _create_model_from_args(cls, args):
"""Given ``CommandLineTrainingArgs``, return specified
``textattack.models.wrappers.ModelWrapper`` object."""
assert isinstance(
args, cls
), f"Expect args to be of type `{type(cls)}`, but got type `{type(args)}`."
if args.model_name_or_path == "lstm":
logger.info("Loading textattack model: LSTMForClassification")
max_seq_len = args.model_max_length if args.model_max_length else 128
num_labels = args.model_num_labels if args.model_num_labels else 2
model = LSTMForClassification(
max_seq_length=max_seq_len,
num_labels=num_labels,
emb_layer_trainable=True,
)
model = PyTorchModelWrapper(model, model.tokenizer)
elif args.model_name_or_path == "cnn":
logger.info("Loading textattack model: WordCNNForClassification")
max_seq_len = args.model_max_length if args.model_max_length else 128
num_labels = args.model_num_labels if args.model_num_labels else 2
model = WordCNNForClassification(
max_seq_length=max_seq_len,
num_labels=num_labels,
emb_layer_trainable=True,
)
model = PyTorchModelWrapper(model, model.tokenizer)
else:
import transformers
logger.info(
f"Loading transformers AutoModelForSequenceClassification: {args.model_name_or_path}"
)
max_seq_len = args.model_max_length if args.model_max_length else 512
num_labels = args.model_num_labels if args.model_num_labels else 2
config = transformers.AutoConfig.from_pretrained(
args.model_name_or_path,
num_labels=num_labels,
)
model = transformers.AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path,
config=config,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.model_name_or_path,
model_max_length=max_seq_len,
)
model = HuggingFaceModelWrapper(model, tokenizer)
assert isinstance(
model, ModelWrapper
), "`model` must be of type `textattack.models.wrappers.ModelWrapper`."
return model
@classmethod
def _create_dataset_from_args(cls, args):
dataset_args = args.dataset.split(ARGS_SPLIT_TOKEN)
# TODO `HuggingFaceDataset` -> `HuggingFaceDataset`
if args.dataset_train_split:
train_dataset = HuggingFaceDataset(
*dataset_args, split=args.dataset_train_split
)
else:
try:
train_dataset = HuggingFaceDataset(*dataset_args, split="train")
args.dataset_train_split = "train"
except KeyError:
raise KeyError(
f"Error: no `train` split found in `{args.dataset}` dataset"
)
if args.dataset_eval_split:
eval_dataset = HuggingFaceDataset(
*dataset_args, split=args.dataset_eval_split
)
else:
# try common dev split names
try:
eval_dataset = HuggingFaceDataset(*dataset_args, split="dev")
args.dataset_eval_split = "dev"
except KeyError:
try:
eval_dataset = HuggingFaceDataset(*dataset_args, split="eval")
args.dataset_eval_split = "eval"
except KeyError:
try:
eval_dataset = HuggingFaceDataset(
*dataset_args, split="validation"
)
args.dataset_eval_split = "validation"
except KeyError:
try:
eval_dataset = HuggingFaceDataset(
*dataset_args, split="test"
)
args.dataset_eval_split = "test"
except KeyError:
raise KeyError(
f"Could not find `dev`, `eval`, `validation`, or `test` split in dataset {args.dataset}."
)
if args.filter_train_by_labels:
train_dataset.filter_by_labels_(args.filter_train_by_labels)
if args.filter_eval_by_labels:
eval_dataset.filter_by_labels_(args.filter_eval_by_labels)
# Testing for Coverage of model return values with dataset.
num_labels = args.model_num_labels if args.model_num_labels else 2
# Only Perform labels checks if output_column is equal to label.
if (
train_dataset.output_column == "label"
and eval_dataset.output_column == "label"
):
train_dataset_labels = train_dataset._dataset["label"]
eval_dataset_labels = eval_dataset._dataset["label"]
train_dataset_labels_set = set(train_dataset_labels)
assert all(
label >= 0
for label in train_dataset_labels_set
if isinstance(label, int)
), f"Train dataset has negative label/s {[label for label in train_dataset_labels_set if isinstance(label,int) and label < 0 ]} which is/are not supported by pytorch.Use --filter-train-by-labels to keep suitable labels"
assert num_labels >= len(
train_dataset_labels_set
), f"Model constructed has {num_labels} output nodes and train dataset has {len(train_dataset_labels_set)} labels , Model should have output nodes greater than or equal to labels in train dataset.Use --model-num-labels to set model's output nodes."
eval_dataset_labels_set = set(eval_dataset_labels)
assert all(
label >= 0
for label in eval_dataset_labels_set
if isinstance(label, int)
), f"Eval dataset has negative label/s {[label for label in eval_dataset_labels_set if isinstance(label,int) and label < 0 ]} which is/are not supported by pytorch.Use --filter-eval-by-labels to keep suitable labels"
assert num_labels >= len(
set(eval_dataset_labels_set)
), f"Model constructed has {num_labels} output nodes and eval dataset has {len(eval_dataset_labels_set)} labels , Model should have output nodes greater than or equal to labels in eval dataset.Use --model-num-labels to set model's output nodes."
return train_dataset, eval_dataset
@classmethod
def _create_attack_from_args(cls, args, model_wrapper):
import textattack # noqa: F401
if args.attack is None:
return None
assert (
args.attack in ATTACK_RECIPE_NAMES
), f"Unavailable attack recipe {args.attack}"
attack = eval(f"{ATTACK_RECIPE_NAMES[args.attack]}.build(model_wrapper)")
assert isinstance(
attack, Attack
), "`attack` must be of type `textattack.Attack`."
return attack
# This neat trick allows use to reorder the arguments to avoid TypeErrors commonly found when inheriting dataclass.
# https://stackoverflow.com/questions/51575931/class-inheritance-in-python-3-7-dataclasses
@dataclass
class CommandLineTrainingArgs(TrainingArgs, _CommandLineTrainingArgs):
@classmethod
def _add_parser_args(cls, parser):
parser = _CommandLineTrainingArgs._add_parser_args(parser)
parser = TrainingArgs._add_parser_args(parser)
return parser
|