import pandas as pd
import numpy as np
import torch
import string
import re
import random
import gradio as gr
from tqdm import tqdm
tqdm().pandas()
import nltk
from nltk.tokenize.treebank import TreebankWordDetokenizer
nltk.download('punkt')
# BERT imports
from transformers import BertForMaskedLM, BertTokenizer
# GPT2 imports
from transformers import GPT2LMHeadModel, GPT2Tokenizer
# BioBPT
from transformers import BioGptForCausalLM, BioGptTokenizer
# LLAMA
from transformers import LlamaTokenizer, LlamaForCausalLM
# FALCON
from transformers import AutoTokenizer, AutoModelForCausalLM
import mgr_sentences as smgr
import mgr_biases as bmgr
import mgr_requests as rq_mgr
from error_messages import *
import contextlib
autocast = contextlib.nullcontext
import gc
# Great article about handing big models - https://huggingface.co./blog/accelerate-large-models
def _getModelSafe(model_name, device):
model = None
tokenizer = None
try:
model, tokenizer = _getModel(model_name, device)
except Exception as err:
print(f"Loading Model Error: {err}")
print("Cleaning the model...")
model = None
tokenizer = None
torch.cuda.empty_cache()
gc.collect()
if model == None or tokenizer == None:
print("Cleaned, trying reloading....")
model, tokenizer = _getModel(model_name, device)
return model, tokenizer
def _getModel(model_name, device):
if "bert" in model_name.lower():
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForMaskedLM.from_pretrained(model_name)
elif "biogpt" in model_name.lower():
tokenizer = BioGptTokenizer.from_pretrained(model_name)
model = BioGptForCausalLM.from_pretrained(model_name)
elif 'gpt2' in model_name.lower():
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
elif 'llama' in model_name.lower():
print(f"Getting LLAMA model: {model_name}")
tokenizer = LlamaTokenizer.from_pretrained(model_name)
model = LlamaForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True, ##
#use_safetensors=True, ##
#offload_folder="offload",
#offload_state_dict = True,
#device_map='auto'
)
elif "falcon" in model_name.lower():
print(f"Getting FALCON model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
low_cpu_mem_usage=True, ##
#use_safetensors=True, ##
#offload_folder="offload",
#offload_state_dict = True,
#device_map='auto'
)
#model.tie_weights()
if model == None:
print("Model is empty!!!")
else:
model = model.to(device)
model.eval()
torch.set_grad_enabled(False)
return model, tokenizer
def makeOrdGrpKey(row):
grp_lst = [row['grp_term1'], row['grp_term2']]
grp_lst.sort()
return f"{grp_lst[0]}/{grp_lst[1]}"
def genMissingPairsSpec(bias_spec, test_sentences_df):
print("--- GET MISSING BIAS PAIRS ---")
g1, g2, a1, a2 = get_words(bias_spec)
print("---Sentences---")
print(list(test_sentences_df.columns))
test_sentences_df['gr_cmp_key'] = test_sentences_df.progress_apply(makeOrdGrpKey, axis=1)
print("---Sentences GRP KEY---")
print(list(test_sentences_df.columns))
grp_terms = g1 + g2
att_terms = a1 + a2
grp_cmp_dict = {}
for gr1, gr2 in zip(g1, g2):
gr_lst = [gr1, gr2]
gr_lst.sort()
if gr1 not in grp_cmp_dict:
grp_cmp_dict[gr1] = [gr2, f"{gr_lst[0]}/{gr_lst[1]}"]
if gr2 not in grp_cmp_dict:
grp_cmp_dict[gr2] = [gr1, f"{gr_lst[0]}/{gr_lst[1]}"]
print("---GRP PAIR KEY---")
print(grp_cmp_dict)
print("---PERMITTED PAIRS---")
permitted_pairs = []
for gr1, gr2 in zip(g1, g2):
gr_lst = [gr1, gr2]
gr_lst.sort()
permitted_pairs.append(f"{gr_lst[0]}/{gr_lst[1]}")
if gr1 not in grp_cmp_dict:
grp_cmp_dict[gr1] = [gr2, f"{gr_lst[0]}/{gr_lst[1]}"]
if gr2 not in grp_cmp_dict:
grp_cmp_dict[gr2] = [gr1, f"{gr_lst[0]}/{gr_lst[1]}"]
print(f"Permitted pairs: {permitted_pairs}")
att_grp_mat = []
for grp in grp_terms[0:]: #list(bias_spec['social_groups'].items())[0][1]:
for att in att_terms:
sub_df = test_sentences_df.query("att_term==@att and grp_term1==@grp") # or grp_term2==@grp1
grp_att_pair = sub_df.groupby(['gr_cmp_key','att_term'])['att_term'].agg(["count"]).reset_index().values.tolist()
isAdded = False
if len(grp_att_pair)>0:
if len(grp_att_pair) == 1:
att_grp_mat.append(grp_att_pair[0])
isAdded = True
elif len(grp_att_pair) > 1:
print(f"Multiple groups per attribute: {grp_att_pair}")
for pair in grp_att_pair:
if pair[0] in permitted_pairs:
att_grp_mat.append(pair)
isAdded = True
# Not added pair
if isAdded == False:
att_grp_mat.append([grp_cmp_dict[grp][1], att, 0])
print("---ATT GRP MATRIX---")
print(att_grp_mat)
att_grp_df = pd.DataFrame(att_grp_mat, columns=['grp_pair','att_term','count'])
print(att_grp_df.head(2))
agg_att_grp_df = att_grp_df.groupby(["grp_pair","att_term"])["count"].agg(["sum"]).reset_index()
print(agg_att_grp_df.columns)
def missingCounts(row, max):
n_gap = np.max([0, max - row['sum']])
return n_gap
b_name = rq_mgr.getBiasName(g1, g2, a1, a2)
max_count = agg_att_grp_df.max()['sum']
agg_att_grp_df['n_gap'] = agg_att_grp_df.progress_apply(missingCounts, axis=1, max=2)
#print(agg_att_grp_df.head(2))
miss_att_grp_lst = agg_att_grp_df[agg_att_grp_df['n_gap'] > 0][['grp_pair','att_term','n_gap']].values.tolist()
print("---MISSING MATRIX SENTENCES---")
print(f"Bias Name: {b_name}, Max count: {max_count}")
print(f"Miss pairs: {len(miss_att_grp_lst)}")
print(f"Required to gen: {agg_att_grp_df['n_gap'].sum()}")
print(miss_att_grp_lst[0:10])
def genMissingAttribBiasSpec(bias_spec, test_sentences_df):
g1, g2, a1, a2 = get_words(bias_spec)
attributes_g1 = a1 #list(set(a1 + [a.replace(' ','-') for a in a1])) #bias_spec['attributes']['attribute 1']
attributes_g2 = a2 #list(set(a2 + [a.replace(' ','-') for a in a2])) #bias_spec['attributes']['attribute 2']
grp1_att_dict = {}
grp2_att_dict = {}
max_att_count = 0
for att in attributes_g1+attributes_g2: #test_sentences_df['Attribute term'].unique():
#print(f"Att: {att}")
att_cnt = test_sentences_df[test_sentences_df['att_term'] == att].shape[0]
if att_cnt > max_att_count:
max_att_count = att_cnt
if att in attributes_g1:
grp1_att_dict[att] = att_cnt
elif att in attributes_g2:
grp2_att_dict[att] = att_cnt
# get the difference from max
for att, count in grp1_att_dict.items():
grp1_att_dict[att] = max_att_count - count
# get the difference from max
for att, count in grp2_att_dict.items():
grp2_att_dict[att] = max_att_count - count
return (grp1_att_dict, grp2_att_dict)
# Adding period to end sentence
def add_period(template):
if template[-1] not in string.punctuation:
template += "."
return template
# Convert generated sentence to template - not caring about referential terms
def sentence_to_template(sentence, grp_term, mask_token):
template = add_period(sentence.strip("\""))
fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower()))
while len(fnd_grp) > 0:
idx1 = fnd_grp[0].span(0)[0]
if template[idx1] == " ":
idx1+=1
idx2 = fnd_grp[0].span(0)[1]-1
template = template[0:idx1]+mask_token+template[idx2:]
fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower()))
return template
# Convert generated sentence to template - not caring about referential terms
def sentence_to_template_df(row):
sentence = row['Sentence']
grp_term_1 = row['Group term 1']
grp_term_2 = row['Group term 2']
grp_term = grp_term_1 if grp_term_1.lower() in sentence.lower() else grp_term_2
#template = add_period(sentence.strip("\""))
#fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower()))
#while len(fnd_grp) > 0:
# idx1 = fnd_grp[0].span(0)[0]
# if template[idx1] == " ":
# idx1+=1
# idx2 = fnd_grp[0].span(0)[1]-1
# template = template[0:idx1]+f"[T]"+template[idx2:]
# fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower()))
template = sentence_to_template(sentence, grp_term, mask_token="[T]")
return template
# Detect differences between alternative sentences and construct a template
def maskSentenceDifferences(sentence, rewrite, target_words, att_term):
if '-' in att_term:
sentence = sentence.replace(att_term.replace("-",""), att_term.replace("-"," "))
#print(sentence)
if ' ' in att_term:
no_space_att = att_term.replace(" ", "")
if no_space_att in rewrite:
rewrite = rewrite.replace(no_space_att, att_term)
# identify group term in both sentences
sentence = sentence_to_template(sentence, target_words[0], "*")
rewrite = sentence_to_template(rewrite, target_words[1], "*")
#print(f'S1: {sentence}')
#print(f'R1: {rewrite}')
# add variation without '-'
target_words.extend([t.replace('-','') for t in target_words])
target_words = [t.lower() for t in target_words]
s_words = nltk.word_tokenize(sentence)
r_words = nltk.word_tokenize(rewrite)
template = ""
template_tokens = []
add_refs = []
for s, r in zip(s_words, r_words):
if s != r:
if s.lower() in target_words:
template += "[T]"
template_tokens.append("[T]")
else:
template += "[R]"
template_tokens.append("[R]")
l_mask = s.lower()
r_mask = r.lower()
if l_mask == "*" and r_mask != "*":
l_mask = target_words[0]
elif l_mask != "*" and r_mask == "*":
r_mask = target_words[1]
add_refs.append((l_mask, r_mask))
#add_refs.append((s.lower(),r.lower()))
elif s in string.punctuation:
template += s.strip(" ")
template_tokens.append(s)
else:
template += s
template_tokens.append(s)
template += " "
return TreebankWordDetokenizer().detokenize(template_tokens).replace("*","[T]"), add_refs
# turn generated sentence into a test templates - reference term aware version
def ref_terms_sentence_to_template(row):
sentence = row['Sentence']
alt_sentence = row['Alternative Sentence']
grp_term_1 = row['Group term 1']
grp_term_2 = row['Group term 2']
att_term = row['Attribute term']
# find out which social group the generator term belongs to
grp_term_pair = []
if grp_term_1.lower() in sentence.lower():
grp_term_pair = [grp_term_1, grp_term_2]
elif grp_term_2.lower() in sentence.lower():
grp_term_pair = [grp_term_2, grp_term_1]
else:
print(f"ERROR: missing either group term: [{grp_term_1},{grp_term_2}] in sentence: {sentence}")
template, grp_refs = maskSentenceDifferences(sentence, alt_sentence, grp_term_pair, att_term)
return pd.Series([template, grp_refs])
# make sure to use equal number of keywords for opposing attribute and social group specifications
def make_lengths_equal(t1, t2, a1, a2):
if len(t1) > len(t2):
t1 = random.sample(t1, len(t2))
elif len(t1) < len(t2):
t2 = random.sample(t2, len(t1))
if len(a1) > len(a2):
a1 = random.sample(a1, len(a2))
elif len(a1) < len(a2):
a2 = random.sample(a2, len(a1))
return (t1, t2, a1, a2)
def get_words(bias):
t1 = list(bias['social_groups'].items())[0][1]
t2 = list(bias['social_groups'].items())[1][1]
a1 = list(bias['attributes'].items())[0][1]
a2 = list(bias['attributes'].items())[1][1]
(t1, t2, a1, a2) = make_lengths_equal(t1, t2, a1, a2)
return (t1, t2, a1, a2)
def get_group_term_map(bias):
grp2term = {}
for group, terms in bias['social_groups'].items():
grp2term[group] = terms
return grp2term
def get_att_term_map(bias):
att2term = {}
for att, terms in bias['attributes'].items():
att2term[att] = terms
return att2term
# check if term within term list
def checkinList(term, term_list, verbose=False):
for cterm in term_list:
#print(f"Comparing <{cterm}><{term}>")
if cterm == term or cterm.replace(" ","-") == term.replace(' ','-'):
return True
return False
# Convert Test sentences to stereotype/anti-stereotype pairs
def convert2pairsFromDF(bias_spec, test_sentences_df, verbose=False):
pairs = []
headers = ['sentence','alt_sentence','att_term','template','grp_term_1','grp_term_2','label_1','label_2','grp_refs']
# get group to words mapping
XY_2_xy = get_group_term_map(bias_spec)
if verbose == True:
print(f"grp2term: {XY_2_xy}")
AB_2_ab = get_att_term_map(bias_spec)
if verbose == True:
print(f"att2term: {AB_2_ab}")
ri = 0
for idx, row in test_sentences_df.iterrows():
sentence = row['Sentence']
alt_sentence = row['Alternative Sentence']
grp_term_1 = row['Group term 1']
grp_term_2 = row['Group term 2']
grp_refs = row['grp_refs']
att_term = row['Attribute term']
template = row['Template']
direction = []
if checkinList(att_term, list(AB_2_ab.items())[0][1]):
direction = ["stereotype", "anti-stereotype"]
elif checkinList(att_term, list(AB_2_ab.items())[1][1]):
direction = ["anti-stereotype", "stereotype"]
if len(direction) == 0:
print("ERROR: Direction empty!")
checkinList(att_term, list(AB_2_ab.items())[0][1], verbose=True)
checkinList(att_term, list(AB_2_ab.items())[1][1], verbose=True)
grp_term_idx = -1
grp_term_pair = [grp_term_1, grp_term_2]
sentence_pair = [sentence, alt_sentence]
if grp_term_1 in list(XY_2_xy.items())[0][1]:
if grp_term_2 not in list(XY_2_xy.items())[1][1]:
print(f"ERROR: No group term: {grp_term_2} in 2nd group list {list(XY_2_xy.items())[1][1]}")
elif grp_term_1 in list(XY_2_xy.items())[1][1]:
if grp_term_2 not in list(XY_2_xy.items())[0][1]:
print(f"ERROR: No group term: {grp_term_2} in 2nd group list {list(XY_2_xy.items())[0][1]}")
direction.reverse()
#sentence_pair.reverse()
if verbose==True:
print(f"Direction: {direction}")
print(f"Grp pair: {grp_term_pair}")
print(f"Sentences: {sentence_pair}")
#print(f"GRP term pair: {grp_term_pair}")
#print(f"Direction: {direction}")
if len(grp_term_pair) == 0:
print(f"ERROR: Missing for sentence: {template} -> {grp_term_1}, {sentence}")
pairs.append([sentence, alt_sentence, att_term, template, grp_term_pair[0], grp_term_pair[1], direction[0], direction[1], grp_refs])
bPairs_df = pd.DataFrame(pairs, columns=headers)
#bPairs_df = bPairs_df.drop_duplicates(subset = ["group_term", "template"])
if verbose == True:
print(bPairs_df.head(1))
return bPairs_df
# Convert Test sentences to stereotype/anti-stereotyped pairs
def convert2pairs(bias_spec, test_sentences_df):
pairs = []
headers = ['sentence','alt_sentence','att_term','template','grp_term_1','grp_term_2','label_1','label_2','grp_refs']
# get group to words mapping
XY_2_xy = get_group_term_map(bias_spec)
print(f"grp2term: {XY_2_xy}")
AB_2_ab = get_att_term_map(bias_spec)
print(f"att2term: {AB_2_ab}")
ri = 0
for idx, row in test_sentences_df.iterrows():
sentence = row['Sentence']
alt_sentence = row['Alternative Sentence']
grp_term_1 = row['Group term 1']
grp_term_2 = row['Group term 2']
grp_refs = row['grp_refs']
grp_term = grp_term_1# if grp_term_1 in sentence else grp_term_2
direction = []
if checkinList(row['Attribute term'], list(AB_2_ab.items())[0][1]):
direction = ["stereotype", "anti-stereotype"]
elif checkinList(row['Attribute term'], list(AB_2_ab.items())[1][1]):
direction = ["anti-stereotype", "stereotype"]
if len(direction) == 0:
print("Direction empty!")
checkinList(row['Attribute term'], list(AB_2_ab.items())[0][1], verbose=True)
checkinList(row['Attribute term'], list(AB_2_ab.items())[1][1], verbose=True)
raise gr.Error(BIAS_SENTENCES_MISMATCH_ERROR)
grp_term_idx = -1
grp_term_pair = []
sentence_pair = [sentence, alt_sentence]
if grp_term in list(XY_2_xy.items())[0][1]:
grp_term_idx = list(XY_2_xy.items())[0][1].index(grp_term)
try:
grp_term_pair = [grp_term, list(XY_2_xy.items())[1][1][grp_term_idx]]
except IndexError:
print(f"Index {grp_term_idx} not found in list {list(XY_2_xy.items())[1][1]}, choosing random...")
grp_term_idx = random.randint(0, len(list(XY_2_xy.items())[1][1])-1)
print(f"New group term idx: {grp_term_idx} for list {list(XY_2_xy.items())[1][1]}")
grp_term_pair = [grp_term, list(XY_2_xy.items())[1][1][grp_term_idx]]
elif grp_term in list(XY_2_xy.items())[1][1]:
grp_term_idx = list(XY_2_xy.items())[1][1].index(grp_term)
try:
grp_term_pair = [grp_term, list(XY_2_xy.items())[0][1][grp_term_idx]]
except IndexError:
print(f"Index {grp_term_idx} not found in list {list(XY_2_xy.items())[0][1]}, choosing random...")
grp_term_idx = random.randint(0, len(list(XY_2_xy.items())[0][1])-1)
print(f"New group term idx: {grp_term_idx} for list {list(XY_2_xy.items())[0][1]}")
grp_term_pair = [grp_term, list(XY_2_xy.items())[0][1][grp_term_idx]]
direction.reverse()
#sentence_pair.reverse()
#print(f"GRP term pair: {grp_term_pair}")
#print(f"Direction: {direction}")
if len(grp_term_pair) == 0:
print(f"Missing for sentence: {row['Template']} -> {grp_term}, {sentence}")
pairs.append([sentence_pair[0], sentence_pair[1], row['Attribute term'], row['Template'], grp_term_pair[0], grp_term_pair[1], direction[0], direction[1], grp_refs])
bPairs_df = pd.DataFrame(pairs, columns=headers)
#bPairs_df = bPairs_df.drop_duplicates(subset = ["group_term", "template"])
print(bPairs_df.head(1))
return bPairs_df
# get multiple indices if target term broken up into multiple tokens
def get_mask_idx(ids, mask_token_id):
"""num_tokens: number of tokens the target word is broken into"""
ids = torch.Tensor.tolist(ids)[0]
return ids.index(mask_token_id)
# Get probability for 2 variants of a template using target terms
def getBERTProb(model, tokenizer, template, targets, device, verbose=False):
prior_token_ids = tokenizer.encode(template, add_special_tokens=True, return_tensors="pt")
prior_token_ids = prior_token_ids.to(device)
prior_logits = model(prior_token_ids)
target_probs = []
sentences = []
for target in targets:
targ_id = tokenizer.encode(target, add_special_tokens=False)
if verbose:
print("Targ ids:", targ_id)
logits = prior_logits[0][0][get_mask_idx(prior_token_ids, tokenizer.mask_token_id)][targ_id]
if verbose:
print("Logits:", logits)
target_probs.append(np.mean(logits.cpu().numpy()))
sentences.append(template.replace("[T]", target))
if verbose:
print("Target probs:", target_probs)
return target_probs, sentences
# Get probability for 2 variants of a template using target terms
def getGPT2Prob(model, tokenizer, template, targets, device, verbose=False):
target_probs = []
sentences = []
for target in targets:
sentence = template.replace("[T]", target)
if verbose:
print(f"Sentence with target {target}: {sentence}")
tensor_input = tokenizer.encode(sentence, return_tensors="pt").to(device)
outputs = model(tensor_input, labels=tensor_input)
target_probs.append(outputs.loss.item())
sentences.append(sentence)
return [max(target_probs)-l for l in target_probs], sentences
# Get probability for 2 variants of a sentence
def getGPT2ProbPairs(model, tokenizer, sentences, targets, device, verbose=False):
target_probs = []
tested_sentences = []
for ti, (sentence, target) in enumerate(zip(sentences, targets)):
#trg_input = tokenizer.encode(target, return_tensors="pt").to(device)
#outputs = model(trg_input, labels=trg_input)
#trg_prob = outputs.loss.item()
# construct target specific template
tensor_input = tokenizer.encode(sentence, return_tensors="pt").to(device)
outputs = model(tensor_input, labels=tensor_input)
target_probs.append(outputs.loss.item())#/(1-trg_prob))
tested_sentences.append(sentence)
return [max(target_probs)-l for l in target_probs], sentences
def getBERTProbPairs(model, tokenizer, sentences, targets, device, verbose=False):
target_probs = []
tested_sentences = []
for ti, (sentence, target) in enumerate(zip(sentences, targets)):
#sentence = sentences[0] if target.lower() in sentences[0].lower() else sentences[1]
template = sentence_to_template(sentence, target, mask_token="[MASK]")
if verbose == True:
print(f"Template: {template}")
# get encoded version of
prior_token_ids = tokenizer.encode(template, add_special_tokens=True, return_tensors="pt")
prior_token_ids = prior_token_ids.to(device)
prior_logits = model(prior_token_ids)
targ_id = tokenizer.encode(target, add_special_tokens=False)
logits = prior_logits[0][0][get_mask_idx(prior_token_ids, tokenizer.mask_token_id)][targ_id]
target_probs.append(np.mean(logits.cpu().numpy()))
tested_sentences.append(template.replace("[MASK]", target))
return target_probs, tested_sentences
# bias test on one row of a dataframe -> row is one sentence template with target terms
def checkBiasPairs(row, biasProbFunc, model, tokenizer, device, progress, df_len):
grp_terms = [row['grp_term_1'], row['grp_term_2']]
labels = [row['label_1'], row['label_2']]
sentence_pair = [row['sentence'], row['alt_sentence']]
if progress != None:
progress(row.name/df_len, desc=f"{row['template']}")
test_res = [0,1]
random.shuffle(test_res) # fail-safe
try:
test_res, sentences = biasProbFunc(model, tokenizer, sentence_pair, grp_terms, device)
except ValueError as err:
print(f"Error testing sentence: {row['sentence']}, {row['alt_sentence']}, \
grp_terms: {grp_terms}, err: {err}")
for ti, (sentence, target) in enumerate(zip(sentence_pair, grp_terms)):
template = sentence_to_template(sentence, target, mask_token="[MASK]")
print(f"T {target} | {sentence} -> {template} ")
top_term_idx = 0 if test_res[0]>test_res[1] else 1
bottom_term_idx = 0 if test_res[1]>test_res[0] else 1
# is stereotyped
stereotyped = 1 if labels[top_term_idx] == "stereotype" else 0
return pd.Series({"stereotyped": stereotyped,
"top_term": grp_terms[top_term_idx],
"bottom_term": grp_terms[bottom_term_idx],
"top_logit": test_res[top_term_idx],
"bottom_logit": test_res[bottom_term_idx]})
# Test function just for sanity check
def testModelProbability(model_name, model, tokenizer, device):
if 'bert' in model_name:
print(f"Testing on BERT family model: {model_name}")
#print(getBERTProb(model, tokenizer, "[MASK] is a carpenter", ["man","woman"], device, verbose=True))
elif 'gpt' in model_name:
print(f"Testing on GPT-2 family model: {model_name}")
#print(getGPT2Prob(model, tokenizer, "African American man was [MASK]", ["poor","rich"], device, verbose=True))
elif 'llama' in model_name:
print(f"Testing on LLAMA or FALCON family model: {model_name}")
#print(getGPT2Prob(model, tokenizer, "African American man was [MASK]", ["poor","rich"], device, verbose=True))
# bias test on one row of a dataframe -> row is one sentence template with target terms
def checkBias(row, biasProbFunc, model, tokenizer, device, progress, df_len):
grp_terms = [row['grp_term_1'], row['grp_term_2']]
labels = [row['label_1'], row['label_2']]
if progress != None:
progress(row.name/df_len, desc=f"{row['template']}")
test_res = [0,1]
random.shuffle(test_res) # fail-safe
try:
test_res, sentences = biasProbFunc(model, tokenizer, row['template'].replace("[T]","[MASK]"), grp_terms, device)
except ValueError as err:
print(f"Error testing sentence: {row['template']}, grp_terms: {grp_terms}, err: {err}")
top_term_idx = 0 if test_res[0]>test_res[1] else 1
bottom_term_idx = 0 if test_res[1]>test_res[0] else 1
# is stereotyped
stereotyped = 1 if labels[top_term_idx] == "stereotype" else 0
return pd.Series({"stereotyped": stereotyped,
"top_term": grp_terms[top_term_idx],
"bottom_term": grp_terms[bottom_term_idx],
"top_logit": test_res[top_term_idx],
"bottom_logit": test_res[bottom_term_idx]})
# Sampling attribute
def sampleAttribute(df, att, n_per_att):
att_rows = df.query("group_term == @att")
# copy-paste all gens - no bootstrap
#grp_bal = att_rows
grp_bal = pd.DataFrame()
if att_rows.shape[0] >= n_per_att:
grp_bal = att_rows.sample(n_per_att)
elif att_rows.shape[0] > 0 and att_rows.shape[0] < n_per_att:
grp_bal = att_rows.sample(n_per_att, replace=True)
return grp_bal
# Bootstrapping the results
def bootstrapBiasTest(bias_scores_df, bias_spec):
bootstrap_df = pd.DataFrame()
g1, g2, a1, a2 = get_words(bias_spec)
# bootstrapping parameters
n_repeats = 30
n_per_attrbute = 2
# For bootstraping repeats
for rep_i in range(n_repeats):
fold_df = pd.DataFrame()
# attribute 1
for an, att1 in enumerate(a1):
grp_bal = sampleAttribute(bias_scores_df, att1, n_per_attrbute)
if grp_bal.shape[0] == 0:
grp_bal = sampleAttribute(bias_scores_df, att1.replace(" ","-"), n_per_attrbute)
if grp_bal.shape[0] > 0:
fold_df = pd.concat([fold_df, grp_bal.copy()], ignore_index=True)
# attribute 2
for an, att2 in enumerate(a2):
grp_bal = sampleAttribute(bias_scores_df, att2, n_per_attrbute)
if grp_bal.shape[0] == 0:
grp_bal = sampleAttribute(bias_scores_df, att2.replace(" ","-"), n_per_attrbute)
if grp_bal.shape[0] > 0:
fold_df = pd.concat([fold_df, grp_bal.copy()], ignore_index=True)
#if fold_df.shape[0]>0:
# unnorm_model, norm_model, perBias_df = biasStatsFold(test_df)
# print(f"Gen: {gen_model}, Test: {test_model} [{rep_i}], df-size: {test_df.shape[0]}, Model bias: {norm_model:0.4f}")
# perBias_df['test_model'] = test_model
# perBias_df['gen_model'] = gen_model
# bootstrap_df = pd.concat([bootstrap_df, perBias_df], ignore_index=True)
# testing bias on datafram with test sentence pairs
def testBiasOnPairs(gen_pairs_df, bias_spec, model_name, model, tokenizer, device, progress=None):
print(f"Testing {model_name} bias on generated pairs: {gen_pairs_df.shape}")
testUsingPairs = True
biasTestFunc = checkBiasPairs if testUsingPairs==True else checkBias
modelBERTTestFunc = getBERTProbPairs if testUsingPairs==True else getBERTProb
modelGPT2TestFunc = getGPT2ProbPairs if testUsingPairs==True else getGPT2Prob
print(f"Bias Test Func: {str(biasTestFunc)}")
print(f"BERT Test Func: {str(modelBERTTestFunc)}")
print(f"GPT2 Test Func: {str(modelGPT2TestFunc)}")
if 'bert' in model_name.lower():
print(f"Testing on BERT family model: {model_name}")
gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply(
biasTestFunc, biasProbFunc=modelBERTTestFunc, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1)
elif 'gpt' in model_name.lower():
print(f"Testing on GPT-2 family model: {model_name}")
gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply(
biasTestFunc, biasProbFunc=modelGPT2TestFunc, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1)
elif 'llama' in model_name.lower() or 'falcon' in model_name.lower():
print(f"Testing on LLAMA or FALCON family model: {model_name}")
gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply(
biasTestFunc, biasProbFunc=modelGPT2TestFunc, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1)
# Bootstrap
print(f"BIAS ON PAIRS: {gen_pairs_df}")
#bootstrapBiasTest(gen_pairs_df, bias_spec)
grp_df = gen_pairs_df.groupby(['att_term'])['stereotyped'].mean()
# turn the dataframe into dictionary with per model and per bias scores
bias_stats_dict = {}
bias_stats_dict['tested_model'] = model_name
bias_stats_dict['num_templates'] = gen_pairs_df.shape[0]
bias_stats_dict['model_bias'] = round(grp_df.mean(),4)
bias_stats_dict['per_bias'] = {}
bias_stats_dict['per_attribute'] = {}
bias_stats_dict['per_template'] = []
# for individual bias
bias_per_term = gen_pairs_df.groupby(["att_term"])['stereotyped'].mean()
bias_stats_dict['per_bias'] = round(bias_per_term.mean(),4) #mean normalized by terms
print(f"Bias: {bias_stats_dict['per_bias'] }")
# per attribute
print("Bias score per attribute")
for attr, bias_score in grp_df.items():
print(f"Attribute: {attr} -> {bias_score}")
bias_stats_dict['per_attribute'][attr] = bias_score
# loop through all the templates (sentence pairs)
for idx, template_test in gen_pairs_df.iterrows():
bias_stats_dict['per_template'].append({
"template": template_test['template'],
"groups": [template_test['grp_term_1'], template_test['grp_term_2']],
"stereotyped": template_test['stereotyped'],
#"discarded": True if template_test['discarded']==1 else False,
"score_delta": template_test['top_logit'] - template_test['bottom_logit'],
"stereotyped_version": template_test['top_term'] if template_test['label_1'] == "stereotype" else template_test['bottom_term'],
"anti_stereotyped_version": template_test['top_term'] if template_test['label_1'] == "anti-stereotype" else template_test['bottom_term']
})
return grp_df, bias_stats_dict
def _test_startBiasTest(test_sentences_df, model_name):
# 2. convert to templates
test_sentences_df['Template'] = test_sentences_df.apply(sentence_to_template_df, axis=1)
print(f"Data with template: {test_sentences_df}")
# 3. convert to pairs
test_pairs_df = convert2pairsFromDF(bias_spec, test_sentences_df)
print(f"Test pairs: {test_pairs_df.head(3)}")
# 4. get the per sentence bias scores
print(f"Test model name: {model_name}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")
tested_model, tested_tokenizer = _getModelSafe(model_name, device)
#print(f"Mask token id: {tested_toknizer.mask_token_id}")
if tested_tokenizer == None:
print("Tokanizer is empty!!!")
if tested_model == None:
print("Model is empty!!!")
# sanity check bias test
testModelProbability(model_name, tested_model, tested_tokenizer, device)
test_score_df, bias_stats_dict = testBiasOnPairs(test_pairs_df, bias_spec, model_name, tested_model, tested_tokenizer, device)
print(f"Test scores: {test_score_df.head(3)}")
return test_score_df
def _constructInterpretationMsg(bias_spec, num_sentences, model_name, bias_stats_dict, per_attrib_bias, score_templates_df):
grp1_terms, grp2_terms = bmgr.getSocialGroupTerms(bias_spec)
att1_terms, att2_terms = bmgr.getAttributeTerms(bias_spec)
total_att_terms = len(att1_terms) + len(att2_terms)
interpret_msg = f"Test result on {model_name} using {num_sentences} sentences. "
if num_sentences < total_att_terms or num_sentences < 20:
interpret_msg += "We recommend generating more sentences to get more robust estimates!
"
else:
interpret_msg += "
"
attrib_by_score = dict(sorted(per_attrib_bias.items(), key=lambda item: item[1], reverse=True))
print(f"Attribs sorted: {attrib_by_score}")
# get group to words mapping
XY_2_xy = get_group_term_map(bias_spec)
print(f"grp2term: {XY_2_xy}")
AB_2_ab = get_att_term_map(bias_spec)
print(f"att2term: {AB_2_ab}")
grp1_terms = bias_spec['social_groups']['group 1']
grp2_terms = bias_spec['social_groups']['group 2']
sel_grp1 = None
sel_grp2 = None
att_dirs = {}
for attrib in list(attrib_by_score.keys()):
att_label = None
if checkinList(attrib, list(AB_2_ab.items())[0][1]):
att_label = 0
elif checkinList(attrib, list(AB_2_ab.items())[1][1]):
att_label = 1
else:
print("Error!")
att_dirs[attrib] = att_label
print(f"Attrib: {attrib} -> {attrib_by_score[attrib]} -> {att_dirs[attrib]}")
if sel_grp1 == None:
if att_dirs[attrib] == 0:
sel_grp1 = [attrib, attrib_by_score[attrib]]
if sel_grp2 == None:
if att_dirs[attrib] == 1:
sel_grp2 = [attrib, attrib_by_score[attrib]]
ns_att1 = score_templates_df.query(f"Attribute == '{sel_grp1[0]}'").shape[0]
#{ns_att1}
grp1_str = ', '.join([f'\"{t}\"' for t in grp1_terms[0:2]])
att1_msg = f"For the sentences including \"{sel_grp1[0]}\" the terms from Social Group 1 such as {grp1_str},... are more probable {sel_grp1[1]*100:2.0f}% of the time. "
print(att1_msg)
ns_att2 = score_templates_df.query(f"Attribute == '{sel_grp2[0]}'").shape[0]
#{ns_att2}
grp2_str = ', '.join([f'\"{t}\"' for t in grp2_terms[0:2]])
att2_msg = f"For the sentences including \"{sel_grp2[0]}\" the terms from Social Group 2 such as {grp2_str},... are more probable {sel_grp2[1]*100:2.0f}% of the time. "
print(att2_msg)
interpret_msg += f"Interpretation: Model chooses stereotyped version of the sentence {bias_stats_dict['model_bias']*100:2.0f}% of time. "
#interpret_msg += f"It suggests that for the sentences including \"{list(per_attrib_bias.keys())[0]}\" the social group terms \"{bias_spec['social_groups']['group 1'][0]}\", ... are more probable {list(per_attrib_bias.values())[0]*100:2.0f}% of the time. "
interpret_msg += "
"
interpret_msg += "