File size: 5,333 Bytes
c05c725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
import os
import re
import pandas as pd
import numpy as np
import glob
import huggingface_hub
print("hfh", huggingface_hub.__version__)
from huggingface_hub import hf_hub_download, upload_file, delete_file, snapshot_download, list_repo_files, dataset_info

DATASET_REPO_ID = "AnimaLab/bias-test-gpt-sentences"
DATASET_REPO_URL = f"https://huggingface.co./{DATASET_REPO_ID}"
HF_DATA_DIRNAME = "data"
LOCAL_DATA_DIRNAME = "data"
LOCAL_SAVE_DIRNAME = "save"

ds_write_token = os.environ.get("DS_WRITE_TOKEN")
HF_TOKEN = os.environ.get("HF_TOKEN")

print("ds_write_token:", ds_write_token!=None)
print("hf_token:", HF_TOKEN!=None)
print("hfh_verssion", huggingface_hub.__version__)

def retrieveAllSaved():
    global DATASET_REPO_ID

    #listing the files - https://huggingface.co./docs/huggingface_hub/v0.8.1/en/package_reference/hf_api
    repo_files = list_repo_files(repo_id=DATASET_REPO_ID, repo_type="dataset")
    #print("Repo files:" + str(repo_files)

    return repo_files

def store_group_sentences(filename: str, df):
  DATA_FILENAME_1 = f"{filename}"
  LOCAL_PATH_FILE = os.path.join(LOCAL_SAVE_DIRNAME, DATA_FILENAME_1)
  DATA_FILE_1 = os.path.join(HF_DATA_DIRNAME, DATA_FILENAME_1)

  print(f"Trying to save to: {DATA_FILE_1}")

  os.makedirs(os.path.dirname(LOCAL_PATH_FILE), exist_ok=True)
  df.to_csv(LOCAL_PATH_FILE, index=False)

  commit_url = upload_file(
    path_or_fileobj=LOCAL_PATH_FILE,
    path_in_repo=DATA_FILE_1,
    repo_id=DATASET_REPO_ID,
    repo_type="dataset",
    token=ds_write_token,
  )

  print(commit_url)

def saveSentences(sentences_df):
  for grp_term in list(sentences_df['org_grp_term'].unique()):
    print(f"Retrieving sentences for group: {grp_term}")
    msg, grp_saved_df, filename = getSavedSentences(grp_term)
    print(f"Num for group: {grp_term} -> {grp_saved_df.shape[0]}")
    add_df = sentences_df[sentences_df['org_grp_term'] == grp_term]
    print(f"Adding {add_df.shape[0]} sentences...")
    
    new_grp_df = pd.concat([grp_saved_df, add_df], ignore_index=True)
    new_grp_df = new_grp_df.drop_duplicates(subset = "sentence")

    print(f"Org size: {grp_saved_df.shape[0]}, Mrg size: {new_grp_df.shape[0]}")
    store_group_sentences(filename, new_grp_df)
   

# https://huggingface.co./spaces/elonmuskceo/persistent-data/blob/main/app.py
def get_sentence_csv(file_path: str):
  file_path = os.path.join(HF_DATA_DIRNAME, file_path)
  print(f"File path: {file_path}")
  try:
    hf_hub_download(
       force_download=True, # to get updates of the dataset
       repo_type="dataset",
       repo_id=DATASET_REPO_ID,
       filename=file_path,
       cache_dir=LOCAL_DATA_DIRNAME,
       force_filename=os.path.basename(file_path)
    )
  except Exception as e:
    # file not found
    print(f"file not found, probably: {e}")

  files=glob.glob(f"./{LOCAL_DATA_DIRNAME}/", recursive=True)
  print("Files glob: "+', '.join(files))
  #print("Save file:" + str(os.path.basename(file_path)))
  
  df = pd.read_csv(os.path.join(LOCAL_DATA_DIRNAME, os.path.basename(file_path)), encoding='UTF8')
  
  return df

def getSavedSentences(grp):
    filename = f"{grp.replace(' ','-')}.csv"
    sentence_df = pd.DataFrame()

    try:
        text = f"Loading sentences: {filename}\n"
        sentence_df = get_sentence_csv(filename)

    except Exception as e:
        text = f"Error, no saved generations for {filename}"
        #raise gr.Error(f"Cannot load sentences: {filename}!")

    return text, sentence_df, filename


def deleteBias(filepath: str):
   commit_url = delete_file(
      path_in_repo=filepath,
      repo_id=DATASET_REPO_ID,
      repo_type="dataset",
      token=ds_write_token,
   )

   return f"Deleted {filepath} -> {commit_url}"

def _testSentenceRetrieval(grp_list, att_list, use_paper_sentences):
  test_sentences = []
  print(f"Att list: {att_list}")
  att_list_dash = [t.replace(' ','-') for t in att_list]
  att_list.extend(att_list_dash)
  att_list_nospace = [t.replace(' ','') for t in att_list]
  att_list.extend(att_list_nospace)
  att_list = list(set(att_list))
  print(f"Att list with dash: {att_list}")

  for gi, g_term in enumerate(grp_list):
    _, sentence_df, _ = getSavedSentences(g_term)
    
    # only take from paper & gpt3.5
    print(f"Before filter: {sentence_df.shape[0]}")
    if use_paper_sentences == True:
      if 'type' in list(sentence_df.columns):
        gen_models = ["gpt-3.5", "gpt-3.5-turbo", "gpt-4"] 
        sentence_df = sentence_df.query("type=='paper' and gen_model in @gen_models")
        print(f"After filter: {sentence_df.shape[0]}")
      else:
        sentence_df = pd.DataFrame(columns=["Group term","Attribute term","Test sentence"])

      if sentence_df.shape[0] > 0:
        sentence_df = sentence_df[["Group term","Attribute term","Test sentence"]]
        sel = sentence_df[sentence_df['Attribute term'].isin(att_list)].values
        if len(sel) > 0:
          for gt,at,s in sel:
            test_sentences.append([s,gt.replace("-"," "),at.replace("-"," ")])

    return test_sentences

if __name__ == '__main__':
  print("ds_write_token:", ds_write_token)
  print("hf_token:", HF_TOKEN!=None)
  print("hfh_verssion", huggingface_hub.__version__)

  sentences = _testSentenceRetrieval(["husband"], ["hairdresser", "steel worker"], use_paper_sentences=True)
  print(sentences)