annapurnapadmaprema-ji
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
import soundfile as sf
|
6 |
+
import streamlit as st
|
7 |
+
from tqdm import tqdm
|
8 |
+
from speechbrain.pretrained import Tacotron2, HIFIGAN
|
9 |
+
|
10 |
+
# Paths
|
11 |
+
output_path = "./processed_data/"
|
12 |
+
os.makedirs(output_path, exist_ok=True)
|
13 |
+
|
14 |
+
# Preprocessing Function
|
15 |
+
def preprocess_audio(audio_path, max_length=1000):
|
16 |
+
"""
|
17 |
+
Preprocess the audio file to generate mel spectrogram with uniform length.
|
18 |
+
"""
|
19 |
+
wav, sr = librosa.load(audio_path, sr=24000)
|
20 |
+
mel_spectrogram = librosa.feature.melspectrogram(
|
21 |
+
y=wav, sr=sr, n_fft=2048, hop_length=256, n_mels=120
|
22 |
+
)
|
23 |
+
mel_spectrogram = np.log(np.maximum(1e-5, mel_spectrogram)) # Log normalization
|
24 |
+
|
25 |
+
# Ensure all mel spectrograms have the same time dimension
|
26 |
+
if mel_spectrogram.shape[1] > max_length: # Truncate
|
27 |
+
mel_spectrogram = mel_spectrogram[:, :max_length]
|
28 |
+
else: # Pad
|
29 |
+
padding = max_length - mel_spectrogram.shape[1]
|
30 |
+
mel_spectrogram = np.pad(mel_spectrogram, ((0, 0), (0, padding)), mode="constant")
|
31 |
+
|
32 |
+
return mel_spectrogram
|
33 |
+
|
34 |
+
# Function to Split Long Text into Chunks
|
35 |
+
def split_text_into_chunks(text, max_chunk_length=200):
|
36 |
+
"""
|
37 |
+
Splits the input text into smaller chunks, each of up to `max_chunk_length` characters.
|
38 |
+
"""
|
39 |
+
words = text.split()
|
40 |
+
chunks = []
|
41 |
+
current_chunk = []
|
42 |
+
current_length = 0
|
43 |
+
|
44 |
+
for word in words:
|
45 |
+
if current_length + len(word) + 1 > max_chunk_length:
|
46 |
+
chunks.append(" ".join(current_chunk))
|
47 |
+
current_chunk = []
|
48 |
+
current_length = 0
|
49 |
+
current_chunk.append(word)
|
50 |
+
current_length += len(word) + 1 # Account for space
|
51 |
+
|
52 |
+
if current_chunk:
|
53 |
+
chunks.append(" ".join(current_chunk))
|
54 |
+
|
55 |
+
return chunks
|
56 |
+
|
57 |
+
# Generate Speech for Long Text
|
58 |
+
def generate_speech(text, tacotron2, hifi_gan, output_file="long_speech.wav", sample_rate=24000):
|
59 |
+
"""
|
60 |
+
Generates a long speech by splitting the text into chunks, generating audio for each,
|
61 |
+
and concatenating the waveforms.
|
62 |
+
"""
|
63 |
+
chunks = split_text_into_chunks(text)
|
64 |
+
waveforms = []
|
65 |
+
|
66 |
+
for chunk in tqdm(chunks, desc="Generating speech"):
|
67 |
+
text_input = [str(chunk)]
|
68 |
+
mel_output, mel_length, alignment = tacotron2.encode_batch(text_input)
|
69 |
+
waveform = hifi_gan.decode_batch(mel_output)
|
70 |
+
waveforms.append(waveform.squeeze().cpu().numpy())
|
71 |
+
|
72 |
+
# Concatenate waveforms
|
73 |
+
long_waveform = np.concatenate(waveforms, axis=0)
|
74 |
+
|
75 |
+
# Save the concatenated audio
|
76 |
+
sf.write(output_file, long_waveform, sample_rate)
|
77 |
+
print(f"Audio has been synthesized and saved as '{output_file}'.")
|
78 |
+
|
79 |
+
# Load Pretrained Tacotron2 and HiFi-GAN
|
80 |
+
tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmpdir_tacotron2")
|
81 |
+
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_hifigan")
|
82 |
+
|
83 |
+
# Fine-tuned model (if available)
|
84 |
+
if os.path.exists("indic_accent_tacotron2.pth"):
|
85 |
+
tacotron2.load_state_dict(torch.load("indic_accent_tacotron2.pth"))
|
86 |
+
print("Fine-tuned Tacotron2 model loaded successfully.")
|
87 |
+
|
88 |
+
# Streamlit UI
|
89 |
+
st.title("Text to Speech Generator")
|
90 |
+
|
91 |
+
# Text input for the user
|
92 |
+
text_input = st.text_area("Enter the text you want to convert to speech:",
|
93 |
+
"Good morning, lovely listeners! This is your favorite RJ, Sapna...")
|
94 |
+
|
95 |
+
# Button to generate speech
|
96 |
+
if st.button("Generate Speech"):
|
97 |
+
if text_input:
|
98 |
+
output_file = "output_long_speech.wav"
|
99 |
+
|
100 |
+
# Generate speech for the provided text
|
101 |
+
with st.spinner("Generating speech..."):
|
102 |
+
generate_speech(text_input, tacotron2, hifi_gan, output_file)
|
103 |
+
|
104 |
+
# Provide download link
|
105 |
+
st.success("Speech generation complete!")
|
106 |
+
st.audio(output_file, format="audio/wav")
|
107 |
+
st.download_button(label="Download Speech", data=open(output_file, "rb").read(), file_name=output_file, mime="audio/wav")
|
108 |
+
else:
|
109 |
+
st.warning("Please enter some text to generate speech.")
|