import streamlit as st import numpy as np import cv2 import tempfile import os # Load model files prototxt_path = "colorization_deploy_v2.prototxt" model_path = "colorization_release_v2.caffemodel" kernel_path = "pts_in_hull.npy" # Streamlit app title st.title("Video Colorization App") # File upload uploaded_video = st.file_uploader("Upload a black and white video", type=["mp4", "avi"]) if uploaded_video is not None: # Save uploaded video to a temporary file tfile = tempfile.NamedTemporaryFile(delete=False) tfile.write(uploaded_video.read()) video_path = tfile.name # Output path for the colorized video output_path = os.path.join(tempfile.gettempdir(), "colorized_video.mp4") # Load the pre-trained model net = cv2.dnn.readNetFromCaffe(prototxt_path, model_path) points = np.load(kernel_path) points = points.transpose().reshape(2, 313, 1, 1) net.getLayer(net.getLayerId("class8_ab")).blobs = [points.astype(np.float32)] net.getLayer(net.getLayerId("conv8_313_rh")).blobs = [np.full([1, 313], 2.686, dtype="float32")] # Open the video file cap = cv2.VideoCapture(video_path) # Get video properties frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Create a VideoWriter object to save the colorized video fourcc = cv2.VideoWriter_fourcc(*"mp4v") out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height)) # Initialize progress bar and frame counter frame_count = 0 progress_bar = st.progress(0) progress_text = st.empty() # Placeholder for frame count text # Process each frame while True: ret, frame = cap.read() if not ret: break frame_count += 1 progress_text.text(f"Processing frame {frame_count} of {total_frames}") # Convert frame to LAB color space and preprocess normalized = frame.astype("float32") / 255.0 lab = cv2.cvtColor(normalized, cv2.COLOR_BGR2LAB) resized = cv2.resize(lab, (224, 224)) L = cv2.split(resized)[0] L -= 43 # Set the input and get the colorization net.setInput(cv2.dnn.blobFromImage(L)) ab = net.forward()[0, :, :, :].transpose((1, 2, 0)) ab = cv2.resize(ab, (frame.shape[1], frame.shape[0])) # Combine with the L channel L = cv2.split(lab)[0] colorized = np.concatenate((L[:, :, np.newaxis], ab), axis=2) colorized = cv2.cvtColor(colorized, cv2.COLOR_LAB2BGR) colorized = (255 * colorized).astype("uint8") # Update the progress line and frame count display progress_bar.progress(frame_count / total_frames) # Write colorized frame to output out.write(colorized) # Release resources cap.release() out.release() # Display the colorized video st.success("Video colorization completed!") st.video(output_path) # Provide a download link for the colorized video with open(output_path, "rb") as file: st.download_button(label="Download Colorized Video", data=file, file_name="colorized_video.mp4", mime="video/mp4")