ankitkupadhyay
commited on
Upload 2 files
Browse filesadded app and requirement files
- app.py +79 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import ViTFeatureExtractor, ViTModel, BertTokenizerFast, BertModel
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
class VisionLanguageModel(nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super(VisionLanguageModel, self).__init__()
|
10 |
+
self.vision_model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
11 |
+
self.language_model = BertModel.from_pretrained('bert-base-uncased')
|
12 |
+
self.classifier = nn.Linear(
|
13 |
+
self.vision_model.config.hidden_size + self.language_model.config.hidden_size,
|
14 |
+
2 # Number of classes: benign or malignant
|
15 |
+
)
|
16 |
+
|
17 |
+
def forward(self, input_ids, attention_mask, pixel_values):
|
18 |
+
vision_outputs = self.vision_model(pixel_values=pixel_values)
|
19 |
+
vision_pooled_output = vision_outputs.pooler_output
|
20 |
+
|
21 |
+
language_outputs = self.language_model(
|
22 |
+
input_ids=input_ids,
|
23 |
+
attention_mask=attention_mask
|
24 |
+
)
|
25 |
+
language_pooled_output = language_outputs.pooler_output
|
26 |
+
|
27 |
+
combined_features = torch.cat(
|
28 |
+
(vision_pooled_output, language_pooled_output),
|
29 |
+
dim=1
|
30 |
+
)
|
31 |
+
|
32 |
+
logits = self.classifier(combined_features)
|
33 |
+
return logits
|
34 |
+
|
35 |
+
# Load the model checkpoint
|
36 |
+
model = VisionLanguageModel()
|
37 |
+
model.load_state_dict(torch.load('best_model.pth', map_location=torch.device('cpu')))
|
38 |
+
model.eval()
|
39 |
+
|
40 |
+
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
41 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
42 |
+
|
43 |
+
def predict(image, text_input):
|
44 |
+
# Preprocess the image
|
45 |
+
image = feature_extractor(images=image, return_tensors="pt").pixel_values
|
46 |
+
|
47 |
+
# Preprocess the text
|
48 |
+
encoding = tokenizer(
|
49 |
+
text_input,
|
50 |
+
add_special_tokens=True,
|
51 |
+
max_length=256,
|
52 |
+
padding='max_length',
|
53 |
+
truncation=True,
|
54 |
+
return_tensors='pt'
|
55 |
+
)
|
56 |
+
|
57 |
+
# Make a prediction
|
58 |
+
with torch.no_grad():
|
59 |
+
outputs = model(
|
60 |
+
input_ids=encoding['input_ids'],
|
61 |
+
attention_mask=encoding['attention_mask'],
|
62 |
+
pixel_values=image
|
63 |
+
)
|
64 |
+
_, prediction = torch.max(outputs, dim=1)
|
65 |
+
return "Malignant" if prediction.item() == 1 else "Benign"
|
66 |
+
|
67 |
+
# Define Gradio interface
|
68 |
+
iface = gr.Interface(
|
69 |
+
fn=predict,
|
70 |
+
inputs=[
|
71 |
+
gr.inputs.Image(type="pil", label="Upload Skin Lesion Image"),
|
72 |
+
gr.inputs.Textbox(label="Clinical Information (e.g., patient age, symptoms)")
|
73 |
+
],
|
74 |
+
outputs="text",
|
75 |
+
title="Skin Lesion Classification Demo",
|
76 |
+
description="This model classifies skin lesions as benign or malignant based on an image and clinical information."
|
77 |
+
)
|
78 |
+
|
79 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|