anitap commited on
Commit
1f2b1df
1 Parent(s): cdc9f5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -150
app.py CHANGED
@@ -1,154 +1,70 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
 
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
 
153
  if __name__ == "__main__":
154
  demo.launch()
 
1
+ from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ import fitz
4
+ import gradio as gr
5
+ import requests
6
+ import io
7
+ import re
8
+ import os
9
+ from PIL import Image
10
+
11
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
12
+ qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
13
+
14
+ os.environ["HUGGINGFACE_HUB_TOKEN"] = "ctp-hw"
15
+ my_key = os.environ["HUGGINGFACE_HUB_TOKEN"]
16
+
17
+ def extract_text_from_pdf(pdf_file):
18
+ with fitz.open(pdf_file) as pdf:
19
+ text = ""
20
+ for page in pdf:
21
+ text += page.get_text("text")
22
+
23
+ text = re.sub(r'\s+', ' ', text)
24
+ text = text.strip()
25
+ return text
26
+
27
+ def summarize_pdf(pdf_file):
28
+ text = extract_text_from_pdf(pdf_file)
29
+
30
+ if len(text) > 1000:
31
+ chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
32
+ summary = ""
33
+ for chunk in chunks:
34
+ summary += summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]['summary_text'] + " "
35
+ else:
36
+ summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
37
+
38
+ return summary
39
+
40
+ def answer_question(pdf_file, question):
41
+ text = extract_text_from_pdf(pdf_file)
42
+ answer = qa_model(question=question, context=text)
43
+ return answer['answer']
44
+
45
+ API_URL = "https://api-inference.huggingface.co/models/stable-diffusion-v1-5/stable-diffusion-v1-5"
46
+ headers = {"Authorization": f"Bearer {my_key}"}
47
+
48
+ def query(payload):
49
+ response = requests.post(API_URL, headers=headers, json=payload)
50
+ return response.content
51
+
52
+ def summarize_and_qa(pdf_file, question):
53
+ summary = summarize_pdf(pdf_file)
54
+ answer = answer_question(pdf_file, question)
55
+ image_bytes = query({
56
+ "inputs": answer,
57
+ })
58
+ image = Image.open(io.BytesIO(image_bytes))
59
+ return summary, answer, image
60
+
61
+ gr.Interface(
62
+ fn=summarize_and_qa,
63
+ inputs=["file", "text"],
64
+ outputs=["textbox", "textbox", "image"],
65
+ title="PDF Summary and Q&A",
66
+ description="Upload a PDF to get a summary and answer questions based on the content. It will also give a picture to help you better understand the content."
67
+ ).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  if __name__ == "__main__":
70
  demo.launch()