Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,70 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
import torch
|
8 |
-
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
-
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
)
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
demo.launch()
|
|
|
1 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import fitz
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
import io
|
7 |
+
import re
|
8 |
+
import os
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
12 |
+
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
13 |
+
|
14 |
+
os.environ["HUGGINGFACE_HUB_TOKEN"] = "ctp-hw"
|
15 |
+
my_key = os.environ["HUGGINGFACE_HUB_TOKEN"]
|
16 |
+
|
17 |
+
def extract_text_from_pdf(pdf_file):
|
18 |
+
with fitz.open(pdf_file) as pdf:
|
19 |
+
text = ""
|
20 |
+
for page in pdf:
|
21 |
+
text += page.get_text("text")
|
22 |
+
|
23 |
+
text = re.sub(r'\s+', ' ', text)
|
24 |
+
text = text.strip()
|
25 |
+
return text
|
26 |
+
|
27 |
+
def summarize_pdf(pdf_file):
|
28 |
+
text = extract_text_from_pdf(pdf_file)
|
29 |
+
|
30 |
+
if len(text) > 1000:
|
31 |
+
chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
|
32 |
+
summary = ""
|
33 |
+
for chunk in chunks:
|
34 |
+
summary += summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]['summary_text'] + " "
|
35 |
+
else:
|
36 |
+
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
37 |
+
|
38 |
+
return summary
|
39 |
+
|
40 |
+
def answer_question(pdf_file, question):
|
41 |
+
text = extract_text_from_pdf(pdf_file)
|
42 |
+
answer = qa_model(question=question, context=text)
|
43 |
+
return answer['answer']
|
44 |
+
|
45 |
+
API_URL = "https://api-inference.huggingface.co/models/stable-diffusion-v1-5/stable-diffusion-v1-5"
|
46 |
+
headers = {"Authorization": f"Bearer {my_key}"}
|
47 |
+
|
48 |
+
def query(payload):
|
49 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
50 |
+
return response.content
|
51 |
+
|
52 |
+
def summarize_and_qa(pdf_file, question):
|
53 |
+
summary = summarize_pdf(pdf_file)
|
54 |
+
answer = answer_question(pdf_file, question)
|
55 |
+
image_bytes = query({
|
56 |
+
"inputs": answer,
|
57 |
+
})
|
58 |
+
image = Image.open(io.BytesIO(image_bytes))
|
59 |
+
return summary, answer, image
|
60 |
+
|
61 |
+
gr.Interface(
|
62 |
+
fn=summarize_and_qa,
|
63 |
+
inputs=["file", "text"],
|
64 |
+
outputs=["textbox", "textbox", "image"],
|
65 |
+
title="PDF Summary and Q&A",
|
66 |
+
description="Upload a PDF to get a summary and answer questions based on the content. It will also give a picture to help you better understand the content."
|
67 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
demo.launch()
|