anirudhabokil's picture
Adding train.py and calling it from app.py
0650863 verified
# Import the libraries
import os
import time
import json
import uuid
import joblib
import pandas as pd
import gradio as gr
import math
from huggingface_hub import CommitScheduler
from pathlib import Path
# Run the training script placed in the same directory as app.py
os.system("python train.py")
# The training script will train and persist a linear regression
# model with the filename 'model.joblib'
# Load the freshly trained model from disk
insurance_charge_predictor = joblib.load('model.joblib')
# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent
scheduler = CommitScheduler(
repo_id="anirudhabokil/insurance-charge-mlops-logs", # provide a name "insurance-charge-mlops-logs" for the repo_id
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=2
)
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model
# the functions runs when 'Submit' is clicked or when a API request is made
# Set up UI components for input and output
age = gr.Number(label="Age")
bmi = gr.Number(label="BMI")
children = gr.Number(label="Children")
sex = gr.Dropdown(['male','female'], label="Sex")
smoker = gr.Dropdown(['yes','no'], label="Smoker")
region = gr.Dropdown(['southwest','southeast','northwest','northeast'], label="Region")
model_output = gr.Label(label="Insurance Charge")
def predict_insurance_charge(age, bmi, children, sex, smoker, region):
sample = {
'age': age,
'bmi': bmi,
'children': children,
'sex': sex,
'smoker': smoker,
'region': region
}
df = pd.DataFrame([sample])
print(sample)
prediction = insurance_charge_predictor.predict(df).tolist()
#print(prediction)
# While the prediction is made, log both the inputs and outputs to a log file
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
# access
with scheduler.lock:
with log_file.open("a") as f:
f.write(json.dumps(
{
'age': age,
'bmi': bmi,
'children': children,
'sex': sex,
'smoker': smoker,
'region': region,
'prediction': prediction[0]
}
))
f.write("\n")
return prediction[0]
# Create the gradio interface, make title "HealthyLife Insurance Charge Prediction"
demo = gr.Interface(fn=predict_insurance_charge,
inputs=[age, bmi, children, sex, smoker, region],
outputs=model_output,
title="HealthyLife Insurance Charge Prediction",
description="This API allows you to predict insurance charge",
flagging_mode="auto",
concurrency_limit=8)
# Launch with a load balancer
demo.queue()
demo.launch(share=True, debug=True)