fs_sinr / viz_ls_map.py
angelazhu96
code for viz
9ff98d7
raw
history blame
15.4 kB
"""
Demo that takes an iNaturalist taxa ID as input and generates a prediction
for each location on the globe and saves the ouput as an image.
"""
import torch
import numpy as np
import matplotlib.pyplot as plt
import os
import json
import argparse
import utils
import datasets
import eval
import create_inputs_to_fs_sinr
text_model = './experiments/gpt_data.pt'
def extract_grit_token(model, text:str):
def gritlm_instruction(instruction):
return "<|user|>\n" + instruction + "\n<|embed|>\n" if instruction else "<|embed|>\n"
d_rep = model.encode([text], instruction=gritlm_instruction(""))
d_rep = torch.from_numpy(d_rep)
return d_rep
def choose_context_points_from_map(eval_params):
context_points = []
if False:
def onclick(event):
if event.xdata is not None and event.ydata is not None:
# Convert image coordinates to normalized geographical coordinates
lon = event.xdata / mask.shape[1] * 2 - 1
lat = 1 - event.ydata / mask.shape[0] * 2
context_points.append((lon, lat))
print(f"Added context point: ({lon}, {lat})")
# Load ocean mask
with open('paths.json', 'r') as f:
paths = json.load(f)
if eval_params['high_res']:
mask = np.load(os.path.join(paths['masks'], 'ocean_mask_hr.npy'))
else:
mask = np.load(os.path.join(paths['masks'], 'ocean_mask.npy'))
mask_inds = np.where(mask.reshape(-1) == 1)[0]
# # Generate input features
# locs = utils.coord_grid(mask.shape)
# if not eval_params['disable_ocean_mask']:
# locs = locs[mask_inds, :]
# locs = torch.from_numpy(locs)
# Reshape and create masked array for visualization
op_im = np.ones((mask.shape[0] * mask.shape[1])) * np.nan # Set to NaN
op_im[mask_inds] = 0 # Placeholder for the mask visualization
op_im = op_im.reshape((mask.shape[0], mask.shape[1]))
op_im = np.ma.masked_invalid(op_im)
# Set color for masked values
cmap = plt.cm.plasma
cmap.set_bad(color='none')
plt.ioff()
# Display the map and capture context points
fig, ax = plt.subplots(figsize=(6, 3), dpi=334) # Define the figure size
ax.imshow(op_im, cmap=cmap, interpolation='nearest') # Display the image
ax.axis('off') # Turn off the axis
# Connect the onclick event to the handler
cid = fig.canvas.mpl_connect('button_press_event', onclick)
plt.show(block=True) # Block execution until the window is closed
print(f"Context points collected: {context_points}")
else:
#USA
#TODO: 37.541170, -92.003293 1. flip order, then 2. normalize so divide by 180 and 90
context_points = [(-0.5884012559178662, 0.46394662490802496), (-0.5451199953511522, 0.4504212309809269),
(-0.5437674559584422, 0.5342786733289353), (-0.589753795310576, 0.5342786733289353)]
print(f"Context points collected: {context_points}")
return context_points
def main(eval_params):
# load params
with open('paths.json', 'r') as f:
paths = json.load(f)
ckp_name = os.path.split(eval_params['model_path'])[-1]
experiment_name = os.path.split(os.path.split(eval_params['model_path'])[-2])[-1]
eval_overrides = {'ckp_name':ckp_name,
'experiment_name':experiment_name,
'device':eval_params['device']}
train_overrides = {'dataset': 'eval_transformer'}
#grit = GritLM("GritLM/GritLM-7B", torch_dtype="auto", mode="embedding")
#grit_gpt = torch.load(text_model, map_location='cpu')
#context_model = torch.load("experiments/zero_shot_ls_sin_cos_cap_1000_text_context_20_sinr_two_layer_nn/model.pt", map_location=torch.device('cpu'))
context_data = np.load('data/positive_eval_data.npz')
text_type_value = 0
for pt in eval_params['context_pt_trial']:
number_of_context_points = pt
if eval_params['choose_context_points'] == 1:
#context_points = choose_context_points_from_map(eval_params)
text_emb, text_type_value = create_inputs_to_fs_sinr.use_pregenerated_textemb_fromchris(taxon_id=eval_params['test_taxa'],
text_type=eval_params['text_type'])
context_points = create_inputs_to_fs_sinr.get_eval_context_points(taxa_id=eval_params['test_taxa'],
context_data=context_data,
size=number_of_context_points)
model, context_locs_of_interest, train_params, class_of_interest = eval.generate_eval_embedding_from_given_points(
context_points=context_points,
overrides=eval_overrides,
taxa_of_interest=eval_params['taxa_id'],
train_overrides=train_overrides,
text_emb=text_emb)
#TODO: why is taxa_id updated to 'selected pts'??
eval_params['taxa_id'] = 'selected_points'
else:
model, context_locs_of_interest, train_params, class_of_interest = eval.generate_eval_embeddings(
overrides=eval_overrides,
taxa_of_interest=eval_params['taxa_id'],
num_context=eval_params['num_context'],
train_overrides=train_overrides)
if train_params['params']['input_enc'] in ['env', 'sin_cos_env']:
raster = datasets.load_env()
else:
raster = None
enc = utils.CoordEncoder(train_params['params']['input_enc'], raster=raster, input_dim=train_params['params']['input_dim'])
enc_time = utils.CoordEncoder('sin_cos', raster=None, input_dim=2 * train_params['params']['input_time_dim'])
# load ocean mask
if eval_params['high_res']:
mask = np.load(os.path.join(paths['masks'], 'ocean_mask_hr.npy'))
else:
mask = np.load(os.path.join(paths['masks'], 'ocean_mask.npy'))
#mask = 0*mask+1
mask_inds = np.where(mask.reshape(-1) == 1)[0]
# generate input features
locs = utils.coord_grid(mask.shape)
if not eval_params['disable_ocean_mask']:
locs = locs[mask_inds, :]
locs = torch.from_numpy(locs)
locs_enc = enc.encode(locs).to(eval_params['device'])
if train_params['params']['input_time_dim'] > 0:
extra_input = torch.cat([enc_time.encode(torch.tensor([[0.0]]), normalize=False), torch.tensor([[1.0]])],
dim=1).to(eval_params['device'])
locs_enc = torch.cat((locs_enc, extra_input.repeat(locs_enc.shape[0], 1)), dim=1)
with torch.no_grad():
# Here if we set eval to False we will see what the ema embeddings look like (currently as ema is 1.0 this is just the last training example seen)
preds = model.embedding_forward(x=locs_enc, class_ids=None, return_feats=False, class_of_interest=class_of_interest, eval=True).cpu().numpy()
# threshold predictions
if eval_params['threshold'] > 0:
print(f'Applying threshold of {eval_params["threshold"]} to the predictions.')
preds[preds<eval_params['threshold']] = 0.0
preds[preds>=eval_params['threshold']] = 1.0
# mask data
if not eval_params['disable_ocean_mask']:
op_im = np.ones((mask.shape[0] * mask.shape[1])) * np.nan # set to NaN
op_im[mask_inds] = preds
else:
op_im = preds
# reshape and create masked array for visualization
op_im = op_im.reshape((mask.shape[0], mask.shape[1]))
op_im = np.ma.masked_invalid(op_im)
# set color for masked values
cmap = plt.cm.plasma
cmap.set_bad(color='none')
if eval_params['set_max_cmap_to_1']:
vmax = 1.0
else:
vmax = np.max(op_im)
# # Display the image
# if eval_params['show_map'] == 1:
# fig, ax = plt.subplots()
# cax = ax.imshow(op_im, vmin=0, vmax=vmax, cmap=cmap)
# fig.colorbar(cax)
# plt.show(block=True) # Set block=True to block code execution until the window is closed
if eval_params['show_map'] == 1:
# Display the image
fig, ax = plt.subplots(figsize=(6,3), dpi=334)
plt.imshow(op_im, vmin=0, vmax=vmax, cmap=cmap, interpolation='nearest') # Display the image
plt.axis('off') # Turn off the axis
if eval_params['show_context_points'] == 1:
# Convert the tensor to numpy array if it's not already
context_locs = context_locs_of_interest.numpy() if isinstance(context_locs_of_interest, torch.Tensor) else context_locs_of_interest
# Convert context locations directly to image coordinates
#delete our dumby context point (at 0,0)
image_x = (context_locs[1:, 0] + 1) / 2 * op_im.shape[1] # Scale longitude from [-1, 1] to [0, image width]
image_y = (1 - (context_locs[1:, 1] + 1) / 2) * op_im.shape[
0] # Scale latitude from [-1, 1] to [0, image height]
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
# Plot the context locations
def getImage(path):
return OffsetImage(plt.imread(path), zoom=.04)
for x0, y0 in zip(image_x, image_y):
ab = AnnotationBbox(getImage('black_circle.png'), (x0, y0), frameon=False)
ax.add_artist(ab)
#plt.scatter(image_x, image_y, c='green', s=30, marker=r'$\checkmark$') # Adjust color and size of the point
#plt.show(block=True) # Block execution until the window is closed
exp_name = eval_params['model_path'].split(os.path.sep)[-2]
# save image
#save_loc = os.path.join(eval_params['op_path'], exp_name + '_' + str(eval_params['taxa_id']) + '_' + eval_params['additional_save_name'] +'_map.png')
#save_loc = os.path.join(eval_params['op_path'], exp_name + '_' + str(eval_params['taxa_id']) + '_' + eval_params['additional_save_name'] +'_map.png')
#save_loc = 'images/testenv_' + eval_params['taxa_name'] + '(' + eval_params['taxa_id'] + ')_'+ eval_params['text_type'] + '(' + str(text_type_value) + ')_' + str(number_of_context_points) +'.png'
save_loc = 'images/testenv_' + eval_params['taxa_name'] + '(' + eval_params['taxa_id'] + ')_'+ eval_params['text_type'] + '_' + str(number_of_context_points) +'.png'
print(f'Saving image to {save_loc}')
plt.savefig(save_loc, bbox_inches='tight', pad_inches=0, dpi=334)
# plt.imsave(fname=save_loc, arr=op_im, vmin=0, vmax=vmax, cmap=cmap)
plt.show(block=False) # Block execution until the window is closed
return True
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
info_str = '\nDemo that takes an iNaturalist taxa ID as input and ' + \
'generates a predicted range for each location on the globe ' + \
'and saves the ouput as an image.\n\n' + \
'Warning: these estimated ranges should be validated before use.'
parser = argparse.ArgumentParser(usage=info_str)
# parser.add_argument('--model_path', type=str, default='./pretrained_models/model_an_full_input_enc_sin_cos_hard_cap_num_per_class_1000.pt')
# parser.add_argument('--model_path', type=str, default='./experiments/transformer_ema_1.0/model_10.pt')
# parser.add_argument('--model_path', type=str, default='./experiments/03_08_coord_multihead.pt/model.pt')
# parser.add_argument('--model_path', type=str, default='./experimentvs/coord_context_20_without_registry/model_best.pt')
# parser.add_argument('--model_path', type=str, default='./experiments/coord_sinr_inputs_context_20_without_registry/model_best.pt')
parser.add_argument('--model_path', type=str, default='./experiments/zero_shot_ls_sin_cos_env_cap_1000_text_context_20_sinr_two_layer_nn/model.pt')
#parser.add_argument('--model_path', type=str, default='./experiments/zero_shot_ls_sin_cos_cap_1000_text_context_20_sinr_two_layer_nn/model.pt')
# parser.add_argument('--taxa_id', type=int, default=144575, help='iNaturalist taxon ID.')
# parser.add_argument('--taxa_id', type=int, default=9083, help='iNaturalist taxon ID.')
parser.add_argument('--taxa_id', type=int, default=3352, help='iNaturalist taxon ID.')
parser.add_argument('--threshold', type=float, default=-1, help='Threshold the range map [0, 1].')
parser.add_argument('--op_path', type=str, default='./images/', help='Location where the output image will be saved.')
parser.add_argument('--rand_taxa', action='store_true', help='Select a random taxa.')
parser.add_argument('--high_res', action='store_true', help='Generate higher resolution output.')
parser.add_argument('--disable_ocean_mask', action='store_true', help='Do not use an ocean mask.')
parser.add_argument('--set_max_cmap_to_1', action='store_true', help='Consistent maximum intensity ouput.')
parser.add_argument('--device', type=str, default='cpu', help='cpu or cuda')
#parser.add_argument('--device', type=str, default='cuda:3', help='cpu or cuda')
parser.add_argument('--show_map', type=int, default=1, help='shows the map if 1')
parser.add_argument('--show_context_points', type=int, default=1, help='also plots context points if 1')
parser.add_argument('--prefix', type=str, default='')
parser.add_argument('--num_context', type=int, default=5)
parser.add_argument('--choose_context_points', type=int, default=1)
parser.add_argument('--additional_save_name', type=str, default="")
#taxas: black&whitewarbler(10286), hyacinth macaw(18938), yellow baboon(67683)
# bawnswallow (11901), pika(43188), loon(4626), eurorobin(13094)
# southernflyingsquirrel (46272)
parser.add_argument('--taxa_name', type=str, default='sfs', help='Name of the taxon.')
parser.add_argument('--test_taxa', type=int, default=46272, help='Taxon ID to test.')
parser.add_argument('--text_type', type=str, default='range', help='Type of text for input.')
parser.add_argument('--context_pt_trial', type=int, nargs='+', default=[0, 1, 2, 5, 10, 20], help='List of context points for trial.')
eval_params = vars(parser.parse_args())
if not os.path.isdir(eval_params['op_path']):
os.makedirs(eval_params['op_path'])
eval_params['high_res'] = True
main(eval_params)