import os import urllib.request import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration import huggingface_hub import re from transformers import AutoTokenizer, AutoModelForCausalLM import torch import time import transformers import requests import globals def fetch_model(url, filename): if not os.path.isfile(filename): urllib.request.urlretrieve(url, filename) print("File downloaded successfully.") else: print("File already exists.") def api_query(API_URL, headers, payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() def post_process(model_output,input): start_pos = model_output.find(input) if start_pos != -1: answer = model_output[start_pos + len(input):].strip() else: answer = model_output print("'Literal meaning:' not found in the text.") answer.replace("\n", "") return answer