Spaces:
Sleeping
Sleeping
import os | |
import urllib.request | |
import gradio as gr | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
import huggingface_hub | |
import re | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import time | |
import transformers | |
import requests | |
import globals | |
from utility import * | |
"""set up""" | |
huggingface_hub.login(token=globals.HF_TOKEN) | |
gemma_tokenizer = AutoTokenizer.from_pretrained(globals.gemma_2b_URL) | |
gemma_model = AutoModelForCausalLM.from_pretrained(globals.gemma_2b_URL) | |
falcon_tokenizer = AutoTokenizer.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True, device_map=globals.device_map, offload_folder="offload") | |
falcon_model = AutoModelForCausalLM.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True, | |
torch_dtype=torch.bfloat16, device_map=globals.device_map, offload_folder="offload") | |
def get_model(model_typ): | |
if model_typ not in ["gemma", "falcon", "falcon_api", "simplet5_base", "simplet5_large"]: | |
raise ValueError('Invalid model type. Choose "gemma", "falcon", "falcon_api","simplet5_base", "simplet5_large".') | |
if model_typ=="gemma": | |
tokenizer = gemma_tokenizer | |
model = gemma_model | |
prefix = globals.gemma_PREFIX | |
elif model_typ=="falcon_api": | |
prefix = globals.falcon_PREFIX | |
model=None | |
tokenizer = None | |
elif model_typ=="falcon": | |
tokenizer = falcon_tokenizer | |
model = falcon_model | |
prefix = globals.falcon_PREFIX | |
elif model_typ in ["simplet5_base","simplet5_large"]: | |
prefix = globals.simplet5_PREFIX | |
URL = globals.simplet5_base_URL if model_typ=="simplet5_base" else globals.simplet5_large_URL | |
T5_MODEL_PATH = f"https://huggingface.co./{URL}/resolve/main/{globals.T5_FILE_NAME}" | |
fetch_model(T5_MODEL_PATH, globals.T5_FILE_NAME) | |
tokenizer = T5Tokenizer.from_pretrained(URL) | |
model = T5ForConditionalGeneration.from_pretrained(URL) | |
return model, tokenizer, prefix | |
def single_query(model_typ="gemma",prompt="She has a heart of gold", | |
max_length=256, | |
api_token=""): | |
model, tokenizer, prefix = get_model(model_typ) | |
if api_token=="" and model_typ=="falcon_api": | |
return "Warning: Aborted, Access token needed to access HuggingFace FalconAPI" | |
start_time = time.time() | |
input = prefix.replace("{fig}", prompt) | |
print(f"Input to model: \n{input}") | |
if model_typ == "simplet5_base" or model_typ == "simplet5_large": | |
inputs = tokenizer(input, return_tensors="pt") | |
outputs = model.generate( | |
inputs["input_ids"], | |
temperature=0.7, | |
max_length=max_length, | |
num_beams=5, | |
top_k=10, | |
do_sample=True, | |
num_return_sequences=1, | |
early_stopping=True | |
) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
elif model_typ=="gemma": | |
inputs = tokenizer(input, return_tensors="pt") | |
generate_ids = model.generate(inputs.input_ids, max_length=max_length) | |
output= tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
print(f"Model original output:{output}\n") | |
answer = post_process(output,input) | |
# pattern = r"\*\*Literal Meaning:\*\*\s*(.*?)(?:\n\n|$)" | |
# match = re.search(pattern, output, re.DOTALL) | |
# if match: | |
# answer = match.group(1).strip() | |
# else: | |
# answer = output | |
elif model_typ=="falcon": | |
falcon_pipeline = transformers.pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
) | |
sequences = falcon_pipeline( | |
prompt, | |
max_length=max_length, | |
do_sample=False, # processing time too long, disable sampling for deterministic output | |
num_return_sequences=1, | |
eos_token_id=falcon_tokenizer.eos_token_id, | |
) | |
for seq in sequences: | |
print(f"Result: \n{seq['generated_text']}") | |
elif model_typ=="falcon_api": | |
API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct" | |
headers = {"Authorization": f"Bearer {api_token}"} | |
payload = { | |
"inputs": input, | |
"parameters": { | |
"temperature": 0.7, | |
"max_length": max_length, | |
"num_return_sequences": 1 | |
} | |
} | |
output = api_query(API_URL=API_URL,headers=headers,payload=payload) | |
answer = output[0]["generated_text"] | |
answer = post_process(answer,input) | |
else: | |
raise ValueError('Invalid model type. Choose "gemma", "falcon", "falcon_api","simplet5_base", "simplet5_large".') | |
print(f"Time taken: {time.time()-start_time:.2f} seconds") | |
print(f"processed model output: {answer}") | |
return answer | |
model_types = ["gemma", "falcon", "falcon_api", "simplet5_base", "simplet5_large"] | |
single_gradio = gr.Interface( | |
fn=single_query, | |
inputs=[ | |
gr.Dropdown(choices=model_types, label="Select Model Type"), | |
gr.Textbox(lines=2, placeholder="Enter a sentence...", label="Input Sentence"), | |
gr.Slider(minimum=50, maximum=512, step=10, value=256, label="Max Length"), | |
gr.Textbox(lines=1, placeholder="Enter your API token", label="HuggingFace Token",value=""), | |
], | |
outputs="text", | |
theme=gr.themes.Soft(), | |
title=globals.TITLE, | |
description="Select a model type from the dropdown and input a sentence to get the paraphrased literal meaning", | |
examples=globals.EXAMPLE | |
) | |
if __name__ == '__main__': | |
single_gradio.launch() |