LiteraLingo_Dev / app.py
Angelawork
typo
d142770
raw
history blame
5.44 kB
import os
import urllib.request
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
import huggingface_hub
import re
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import time
import transformers
import requests
import globals
from utility import *
"""set up"""
huggingface_hub.login(token=globals.HF_TOKEN)
gemma_tokenizer = AutoTokenizer.from_pretrained(globals.gemma_2b_URL)
gemma_model = AutoModelForCausalLM.from_pretrained(globals.gemma_2b_URL)
falcon_tokenizer = AutoTokenizer.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True, device_map=globals.device_map, offload_folder="offload")
falcon_model = AutoModelForCausalLM.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True,
torch_dtype=torch.bfloat16, device_map=globals.device_map, offload_folder="offload")
def get_model(model_typ):
if model_typ not in ["gemma", "falcon", "falcon_api", "simplet5_base", "simplet5_large"]:
raise ValueError('Invalid model type. Choose "gemma", "falcon", "falcon_api","simplet5_base", "simplet5_large".')
if model_typ=="gemma":
tokenizer = gemma_tokenizer
model = gemma_model
prefix = globals.gemma_PREFIX
elif model_typ=="falcon_api":
prefix = globals.falcon_PREFIX
model=None
tokenizer = None
elif model_typ=="falcon":
tokenizer = falcon_tokenizer
model = falcon_model
prefix = globals.falcon_PREFIX
elif model_typ in ["simplet5_base","simplet5_large"]:
prefix = globals.simplet5_PREFIX
URL = globals.simplet5_base_URL if model_typ=="simplet5_base" else globals.simplet5_large_URL
T5_MODEL_PATH = f"https://huggingface.co./{URL}/resolve/main/{globals.T5_FILE_NAME}"
fetch_model(T5_MODEL_PATH, globals.T5_FILE_NAME)
tokenizer = T5Tokenizer.from_pretrained(URL)
model = T5ForConditionalGeneration.from_pretrained(URL)
return model, tokenizer, prefix
def single_query(model_typ="gemma",prompt="She has a heart of gold",
max_length=256,
api_token=""):
model, tokenizer, prefix = get_model(model_typ)
if api_token=="" and model_typ=="falcon_api":
return "Warning: Aborted, Access token needed to access HuggingFace FalconAPI"
start_time = time.time()
input = prefix.replace("{fig}", prompt)
print(f"Input to model: \n{input}")
if model_typ == "simplet5_base" or model_typ == "simplet5_large":
inputs = tokenizer(input, return_tensors="pt")
outputs = model.generate(
inputs["input_ids"],
temperature=0.7,
max_length=max_length,
num_beams=5,
top_k=10,
do_sample=True,
num_return_sequences=1,
early_stopping=True
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
elif model_typ=="gemma":
inputs = tokenizer(input, return_tensors="pt")
generate_ids = model.generate(inputs.input_ids, max_length=max_length)
output= tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(f"Model original output:{output}\n")
answer = post_process(output,input)
# pattern = r"\*\*Literal Meaning:\*\*\s*(.*?)(?:\n\n|$)"
# match = re.search(pattern, output, re.DOTALL)
# if match:
# answer = match.group(1).strip()
# else:
# answer = output
elif model_typ=="falcon":
falcon_pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
sequences = falcon_pipeline(
prompt,
max_length=max_length,
do_sample=False, # processing time too long, disable sampling for deterministic output
num_return_sequences=1,
eos_token_id=falcon_tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: \n{seq['generated_text']}")
elif model_typ=="falcon_api":
API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct"
headers = {"Authorization": f"Bearer {api_token}"}
payload = {
"inputs": input,
"parameters": {
"temperature": 0.7,
"max_length": max_length,
"num_return_sequences": 1
}
}
output = api_query(API_URL=API_URL,headers=headers,payload=payload)
answer = output[0]["generated_text"]
answer = post_process(answer,input)
else:
raise ValueError('Invalid model type. Choose "gemma", "falcon", "falcon_api","simplet5_base", "simplet5_large".')
print(f"Time taken: {time.time()-start_time:.2f} seconds")
print(f"processed model output: {answer}")
return answer
model_types = ["gemma", "falcon", "falcon_api", "simplet5_base", "simplet5_large"]
single_gradio = gr.Interface(
fn=single_query,
inputs=[
gr.Dropdown(choices=model_types, label="Select Model Type"),
gr.Textbox(lines=2, placeholder="Enter a sentence...", label="Input Sentence"),
gr.Slider(minimum=50, maximum=512, step=10, value=256, label="Max Length"),
gr.Textbox(lines=1, placeholder="Enter your API token", label="HuggingFace Token",value=""),
],
outputs="text",
theme=gr.themes.Soft(),
title=globals.TITLE,
description="Select a model type from the dropdown and input a sentence to get the paraphrased literal meaning",
examples=globals.EXAMPLE
)
if __name__ == '__main__':
single_gradio.launch()