Spaces:
Paused
Paused
Anton Forsman
commited on
Commit
•
f04c9cc
1
Parent(s):
43fd0ed
put in everything
Browse files- app.py +23 -2
- model.py +658 -0
- requirements.txt +4 -1
app.py
CHANGED
@@ -1,4 +1,25 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
x = st.slider('Select a values')
|
4 |
-
st.write(x, 'squared is', x * x)
|
|
|
1 |
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from inference import inference
|
4 |
+
import io
|
5 |
+
|
6 |
+
def main():
|
7 |
+
st.title("Image Display App")
|
8 |
+
|
9 |
+
# Button to trigger image generation
|
10 |
+
if st.button('Generate Image'):
|
11 |
+
# Call the function from inference.py
|
12 |
+
image = inference()
|
13 |
+
|
14 |
+
# Convert Pillow image to bytes for display in Streamlit
|
15 |
+
img_buffer = io.BytesIO()
|
16 |
+
image.save(img_buffer, format="PNG")
|
17 |
+
img_buffer.seek(0)
|
18 |
+
|
19 |
+
# Display the image
|
20 |
+
st.image(img_buffer, caption='Generated Image', use_column_width=True)
|
21 |
+
|
22 |
+
if __name__ == "__main__":
|
23 |
+
main()
|
24 |
+
|
25 |
|
|
|
|
model.py
CHANGED
@@ -0,0 +1,658 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from einops import rearrange
|
6 |
+
from collections import defaultdict
|
7 |
+
import torch as th
|
8 |
+
import numpy as np
|
9 |
+
import math
|
10 |
+
from tqdm import tqdm
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
class GaussianDiffusion:
|
14 |
+
def __init__(self, model, noise_steps, beta_0, beta_T, image_size, channels=3, schedule="linear"):
|
15 |
+
"""
|
16 |
+
suggested betas for:
|
17 |
+
* linear schedule: 1e-4, 0.02
|
18 |
+
|
19 |
+
model: the model to be trained (nn.Module)
|
20 |
+
noise_steps: the number of steps to apply noise (int)
|
21 |
+
beta_0: the initial value of beta (float)
|
22 |
+
beta_T: the final value of beta (float)
|
23 |
+
image_size: the size of the image (int, int)
|
24 |
+
"""
|
25 |
+
self.device = 'cpu'
|
26 |
+
self.channels = channels
|
27 |
+
|
28 |
+
self.model = model
|
29 |
+
self.noise_steps = noise_steps
|
30 |
+
self.beta_0 = beta_0
|
31 |
+
self.beta_T = beta_T
|
32 |
+
self.image_size = image_size
|
33 |
+
|
34 |
+
self.betas = self.beta_schedule(schedule=schedule)
|
35 |
+
self.alphas = 1.0 - self.betas
|
36 |
+
# cumulative product of alphas, so we can optimize forward process calculation
|
37 |
+
self.alpha_hat = torch.cumprod(self.alphas, dim=0)
|
38 |
+
|
39 |
+
def beta_schedule(self, schedule="cosine"):
|
40 |
+
if schedule == "linear":
|
41 |
+
return torch.linspace(self.beta_0, self.beta_T, self.noise_steps).to(self.device)
|
42 |
+
elif schedule == "cosine":
|
43 |
+
return self.betas_for_cosine(self.noise_steps)
|
44 |
+
elif schedule == "sigmoid":
|
45 |
+
return self.betas_for_sigmoid(self.noise_steps)
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def sigmoid(x):
|
49 |
+
return 1 / (1 + np.exp(-x))
|
50 |
+
|
51 |
+
def betas_for_sigmoid(self, num_diffusion_timesteps, start=-3,end=3, tau=1.0, clip_min = 1e-9):
|
52 |
+
betas = []
|
53 |
+
v_start = self.sigmoid(start/tau)
|
54 |
+
v_end = self.sigmoid(end/tau)
|
55 |
+
for t in range(num_diffusion_timesteps):
|
56 |
+
t_float = float(t/num_diffusion_timesteps)
|
57 |
+
output0 = self.sigmoid((t_float* (end-start)+start)/tau)
|
58 |
+
output = (v_end-output0) / (v_end-v_start)
|
59 |
+
betas.append(np.clip(output*.2, clip_min,.2))
|
60 |
+
return torch.flip(torch.tensor(betas).to(self.device),dims=[0]).float()
|
61 |
+
|
62 |
+
def betas_for_cosine(self,num_steps,start=0,end=1,tau=1,clip_min=1e-9):
|
63 |
+
v_start = math.cos(start*math.pi / 2) ** (2 * tau)
|
64 |
+
betas = []
|
65 |
+
v_end = math.cos(end* math.pi/2) ** 2*tau
|
66 |
+
for t in range(num_steps):
|
67 |
+
t_float = float(t)/num_steps
|
68 |
+
output = math.cos((t_float* (end-start)+start)*math.pi/2)**(2*tau)
|
69 |
+
output = (v_end - output) / (v_end-v_start)
|
70 |
+
betas.append(np.clip(output*.2,clip_min,.2))
|
71 |
+
return torch.flip(torch.tensor(betas).to(self.device),dims=[0]).float()
|
72 |
+
|
73 |
+
|
74 |
+
def sample_time_steps(self, batch_size=1):
|
75 |
+
return torch.randint(0, self.noise_steps, (batch_size,)).to(self.device)
|
76 |
+
|
77 |
+
def to(self,device):
|
78 |
+
self.device = device
|
79 |
+
self.betas = self.betas.to(device)
|
80 |
+
self.alphas = self.alphas.to(device)
|
81 |
+
self.alpha_hat = self.alpha_hat.to(device)
|
82 |
+
|
83 |
+
|
84 |
+
def q(self, x, t):
|
85 |
+
"""
|
86 |
+
Forward process
|
87 |
+
"""
|
88 |
+
pass
|
89 |
+
|
90 |
+
def p(self, x, t):
|
91 |
+
"""
|
92 |
+
Backward process
|
93 |
+
"""
|
94 |
+
pass
|
95 |
+
|
96 |
+
|
97 |
+
def apply_noise(self, x, t):
|
98 |
+
# force x to be (batch_size, image_width, image_height, channels)
|
99 |
+
if len(x.shape) == 3:
|
100 |
+
x = x.unsqueeze(0)
|
101 |
+
if type(t) == int:
|
102 |
+
t = torch.tensor([t])
|
103 |
+
#print(f'Shape -> {x.shape}, len -> {len(x.shape)}')
|
104 |
+
sqrt_alpha_hat = torch.sqrt(torch.tensor([self.alpha_hat[t_] for t_ in t]).to(self.device))
|
105 |
+
sqrt_one_minus_alpha_hat = torch.sqrt(torch.tensor([1.0 - self.alpha_hat[t_] for t_ in t]).to(self.device))
|
106 |
+
# standard normal distribution
|
107 |
+
epsilon = torch.randn_like(x).to(self.device)
|
108 |
+
|
109 |
+
# Eq 2. in DDPM paper
|
110 |
+
#noisy_image = sqrt_alpha_hat * x + sqrt_one_minus_alpha_hat * epsilon
|
111 |
+
|
112 |
+
"""print(f'''
|
113 |
+
Shape of x {x.shape}
|
114 |
+
Shape of sqrt {sqrt_one_minus_alpha_hat.shape}''')"""
|
115 |
+
|
116 |
+
try:
|
117 |
+
#print(x.shape)
|
118 |
+
#noisy_image = torch.einsum("b,bwhc->bwhc", sqrt_alpha_hat, x.to(self.device)) + torch.einsum("b,bwhc->bwhc", sqrt_one_minus_alpha_hat, epsilon)
|
119 |
+
noisy_image = torch.einsum("b,bcwh->bcwh", sqrt_alpha_hat, x.to(self.device)) + torch.einsum("b,bcwh->bcwh", sqrt_one_minus_alpha_hat, epsilon)
|
120 |
+
except:
|
121 |
+
print(f'Failed image: shape {x.shape}')
|
122 |
+
|
123 |
+
|
124 |
+
#print(f'Noisy image -> {noisy_image.shape}')
|
125 |
+
# returning noisy iamge and the noise which was added to the image
|
126 |
+
#return noisy_image, epsilon
|
127 |
+
#return torch.clip(noisy_image, -1.0, 1.0), epsilon
|
128 |
+
return noisy_image, epsilon
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def normalize_image(x):
|
132 |
+
# normalize image to [-1, 1]
|
133 |
+
return x / 255.0 * 2.0 - 1.0
|
134 |
+
|
135 |
+
@staticmethod
|
136 |
+
def denormalize_image(x):
|
137 |
+
# denormalize image to [0, 255]
|
138 |
+
return (x + 1.0) / 2.0 * 255.0
|
139 |
+
|
140 |
+
def sample_step(self, x, t, cond):
|
141 |
+
batch_size = x.shape[0]
|
142 |
+
device = x.device
|
143 |
+
z = torch.randn_like(x) if t >= 1 else torch.zeros_like(x)
|
144 |
+
z = z.to(device)
|
145 |
+
alpha = self.alphas[t]
|
146 |
+
one_over_sqrt_alpha = 1.0 / torch.sqrt(alpha)
|
147 |
+
one_minus_alpha = 1.0 - alpha
|
148 |
+
|
149 |
+
sqrt_one_minus_alpha_hat = torch.sqrt(1.0 - self.alpha_hat[t])
|
150 |
+
beta_hat = (1 - self.alpha_hat[t-1]) / (1 - self.alpha_hat[t]) * self.betas[t]
|
151 |
+
beta = self.betas[t]
|
152 |
+
# should we reshape the params to (batch_size, 1, 1, 1) ?
|
153 |
+
|
154 |
+
|
155 |
+
# we can either use beta_hat or beta_t
|
156 |
+
# std = torch.sqrt(beta_hat)
|
157 |
+
std = torch.sqrt(beta)
|
158 |
+
# mean + variance * z
|
159 |
+
if cond is not None:
|
160 |
+
predicted_noise = self.model(x, torch.tensor([t]).repeat(batch_size).to(device), cond)
|
161 |
+
else:
|
162 |
+
predicted_noise = self.model(x, torch.tensor([t]).repeat(batch_size).to(device))
|
163 |
+
mean = one_over_sqrt_alpha * (x - one_minus_alpha / sqrt_one_minus_alpha_hat * predicted_noise)
|
164 |
+
x_t_minus_1 = mean + std * z
|
165 |
+
|
166 |
+
return x_t_minus_1
|
167 |
+
|
168 |
+
def sample(self, num_samples, show_progress=True):
|
169 |
+
"""
|
170 |
+
Sample from the model
|
171 |
+
"""
|
172 |
+
cond = None
|
173 |
+
if self.model.is_conditional:
|
174 |
+
# cond is arange()
|
175 |
+
assert num_samples <= self.model.num_classes, "num_samples must be less than or equal to the number of classes"
|
176 |
+
cond = torch.arange(self.model.num_classes)[:num_samples].to(self.device)
|
177 |
+
cond = rearrange(cond, 'i -> i ()')
|
178 |
+
|
179 |
+
self.model.eval()
|
180 |
+
image_versions = []
|
181 |
+
with torch.no_grad():
|
182 |
+
x = torch.randn(num_samples, self.channels, *self.image_size).to(self.device)
|
183 |
+
it = reversed(range(1, self.noise_steps))
|
184 |
+
if show_progress:
|
185 |
+
it = tqdm(it)
|
186 |
+
for t in it:
|
187 |
+
image_versions.append(self.denormalize_image(torch.clip(x, -1, 1)).clone().squeeze(0))
|
188 |
+
x = self.sample_step(x, t, cond)
|
189 |
+
self.model.train()
|
190 |
+
x = torch.clip(x, -1.0, 1.0)
|
191 |
+
return self.denormalize_image(x), image_versions
|
192 |
+
|
193 |
+
def validate(self, dataloader):
|
194 |
+
"""
|
195 |
+
Calculate the loss on the validation set
|
196 |
+
"""
|
197 |
+
self.model.eval()
|
198 |
+
acc_loss = 0
|
199 |
+
with torch.no_grad():
|
200 |
+
for (image, cond) in dataloader:
|
201 |
+
t = self.sample_time_steps(batch_size=image.shape[0])
|
202 |
+
noisy_image, added_noise = self.apply_noise(image, t)
|
203 |
+
noisy_image = noisy_image.to(self.device)
|
204 |
+
added_noise = added_noise.to(self.device)
|
205 |
+
cond = cond.to(self.device)
|
206 |
+
predicted_noise = self.model(noisy_image, t, cond)
|
207 |
+
loss = nn.MSELoss()(predicted_noise, added_noise)
|
208 |
+
acc_loss += loss.item()
|
209 |
+
self.model.train()
|
210 |
+
return acc_loss / len(dataloader)
|
211 |
+
|
212 |
+
class DiffusionImageAPI:
|
213 |
+
def __init__(self, diffusion_model):
|
214 |
+
self.diffusion_model = diffusion_model
|
215 |
+
|
216 |
+
def get_noisy_image(self, image, t):
|
217 |
+
x = torch.tensor(np.array(image))
|
218 |
+
|
219 |
+
x = self.diffusion_model.normalize_image(x)
|
220 |
+
|
221 |
+
y, _ = self.diffusion_model.apply_noise(x, t)
|
222 |
+
|
223 |
+
y = self.diffusion_model.denormalize_image(y)
|
224 |
+
#print(f"Shape of Image: {y.shape}")
|
225 |
+
|
226 |
+
return Image.fromarray(y.squeeze(0).numpy().astype(np.uint8))
|
227 |
+
|
228 |
+
|
229 |
+
def get_noisy_images(self, image, time_steps):
|
230 |
+
"""
|
231 |
+
image: the image to be processed PIL.Image
|
232 |
+
time_steps: the number of time steps to apply noise (int)
|
233 |
+
"""
|
234 |
+
|
235 |
+
return [self.get_noisy_image(image, int(t)) for t in time_steps]
|
236 |
+
|
237 |
+
def tensor_to_image(self, tensor):
|
238 |
+
return Image.fromarray(tensor.cpu().numpy().astype(np.uint8))
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
str_to_act = defaultdict(lambda: nn.SiLU())
|
249 |
+
str_to_act.update({
|
250 |
+
"relu": nn.ReLU(),
|
251 |
+
"silu": nn.SiLU(),
|
252 |
+
"gelu": nn.GELU(),
|
253 |
+
})
|
254 |
+
|
255 |
+
class SinusoidalPositionalEncoding(nn.Module):
|
256 |
+
def __init__(self, dim):
|
257 |
+
super().__init__()
|
258 |
+
self.dim = dim
|
259 |
+
|
260 |
+
def forward(self, t):
|
261 |
+
device = t.device
|
262 |
+
t = t.unsqueeze(-1)
|
263 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, self.dim, 2, device=device).float() / self.dim))
|
264 |
+
sin_enc = torch.sin(t.repeat(1, self.dim // 2) * inv_freq)
|
265 |
+
cos_enc = torch.cos(t.repeat(1, self.dim // 2) * inv_freq)
|
266 |
+
pos_enc = torch.cat([sin_enc, cos_enc], dim=-1)
|
267 |
+
return pos_enc
|
268 |
+
|
269 |
+
class TimeEmbedding(nn.Module):
|
270 |
+
def __init__(self, model_dim: int, emb_dim: int, act="silu"):
|
271 |
+
super().__init__()
|
272 |
+
|
273 |
+
self.lin = nn.Linear(model_dim, emb_dim)
|
274 |
+
self.act = str_to_act[act]
|
275 |
+
self.lin2 = nn.Linear(emb_dim, emb_dim)
|
276 |
+
|
277 |
+
def forward(self, x):
|
278 |
+
x = self.lin(x)
|
279 |
+
x = self.act(x)
|
280 |
+
x = self.lin2(x)
|
281 |
+
return x
|
282 |
+
|
283 |
+
class ConvBlock(nn.Module):
|
284 |
+
def __init__(self, in_channels, out_channels, act="silu", dropout=None, zero=False):
|
285 |
+
super().__init__()
|
286 |
+
|
287 |
+
self.norm = nn.GroupNorm(
|
288 |
+
num_groups=32,
|
289 |
+
num_channels=in_channels,
|
290 |
+
)
|
291 |
+
|
292 |
+
self.act = str_to_act[act]
|
293 |
+
|
294 |
+
if dropout is not None:
|
295 |
+
self.dropout = nn.Dropout(dropout)
|
296 |
+
|
297 |
+
self.conv = nn.Conv2d(
|
298 |
+
in_channels=in_channels,
|
299 |
+
out_channels=out_channels,
|
300 |
+
kernel_size=3,
|
301 |
+
padding=1,
|
302 |
+
)
|
303 |
+
if zero:
|
304 |
+
self.conv.weight.data.zero_()
|
305 |
+
|
306 |
+
|
307 |
+
def forward(self, x):
|
308 |
+
x = self.norm(x)
|
309 |
+
x = self.act(x)
|
310 |
+
if hasattr(self, "dropout"):
|
311 |
+
x = self.dropout(x)
|
312 |
+
x = self.conv(x)
|
313 |
+
return x
|
314 |
+
|
315 |
+
class EmbeddingBlock(nn.Module):
|
316 |
+
def __init__(self, channels: int, emb_dim: int, act="silu"):
|
317 |
+
super().__init__()
|
318 |
+
|
319 |
+
self.act = str_to_act[act]
|
320 |
+
self.lin = nn.Linear(emb_dim, channels)
|
321 |
+
|
322 |
+
def forward(self, x):
|
323 |
+
x = self.act(x)
|
324 |
+
x = self.lin(x)
|
325 |
+
return x
|
326 |
+
|
327 |
+
class ResBlock(nn.Module):
|
328 |
+
def __init__(self, channels: int, emb_dim: int, dropout: float = 0, out_channels=None):
|
329 |
+
"""A resblock with a time embedding and an optional change in channel count
|
330 |
+
"""
|
331 |
+
if out_channels is None:
|
332 |
+
out_channels = channels
|
333 |
+
super().__init__()
|
334 |
+
|
335 |
+
self.conv1 = ConvBlock(channels, out_channels)
|
336 |
+
|
337 |
+
self.emb = EmbeddingBlock(out_channels, emb_dim)
|
338 |
+
|
339 |
+
self.conv2 = ConvBlock(out_channels, out_channels, dropout=dropout, zero=True)
|
340 |
+
|
341 |
+
if channels != out_channels:
|
342 |
+
self.skip_connection = nn.Conv2d(channels, out_channels, kernel_size=1)
|
343 |
+
else:
|
344 |
+
self.skip_connection = nn.Identity()
|
345 |
+
|
346 |
+
|
347 |
+
def forward(self, x, t):
|
348 |
+
original = x
|
349 |
+
x = self.conv1(x)
|
350 |
+
|
351 |
+
t = self.emb(t)
|
352 |
+
# t: (batch_size, time_embedding_dim) = (batch_size, out_channels)
|
353 |
+
# x: (batch_size, out_channels, height, width)
|
354 |
+
# we repeat the time embedding to match the shape of x
|
355 |
+
t = t.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, x.shape[2], x.shape[3])
|
356 |
+
|
357 |
+
x = x + t
|
358 |
+
|
359 |
+
x = self.conv2(x)
|
360 |
+
x = x + self.skip_connection(original)
|
361 |
+
return x
|
362 |
+
|
363 |
+
class SelfAttentionBlock(nn.Module):
|
364 |
+
def __init__(self, channels, num_heads=1):
|
365 |
+
super().__init__()
|
366 |
+
self.channels = channels
|
367 |
+
self.num_heads = num_heads
|
368 |
+
|
369 |
+
self.norm = nn.GroupNorm(32, channels)
|
370 |
+
|
371 |
+
self.attention = nn.MultiheadAttention(
|
372 |
+
embed_dim=channels,
|
373 |
+
num_heads=num_heads,
|
374 |
+
dropout=0,
|
375 |
+
batch_first=True,
|
376 |
+
bias=True,
|
377 |
+
)
|
378 |
+
|
379 |
+
def forward(self, x):
|
380 |
+
h, w = x.shape[-2:]
|
381 |
+
original = x
|
382 |
+
x = self.norm(x)
|
383 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
384 |
+
x = self.attention(x, x, x)[0]
|
385 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
386 |
+
return x + original
|
387 |
+
|
388 |
+
class Downsample(nn.Module):
|
389 |
+
def __init__(self, channels):
|
390 |
+
super().__init__()
|
391 |
+
# ddpm uses maxpool
|
392 |
+
# self.down = nn.MaxPool2d
|
393 |
+
|
394 |
+
# iddpm uses strided conv
|
395 |
+
self.down = nn.Conv2d(
|
396 |
+
in_channels=channels,
|
397 |
+
out_channels=channels,
|
398 |
+
kernel_size=3,
|
399 |
+
stride=2,
|
400 |
+
padding=1,
|
401 |
+
)
|
402 |
+
|
403 |
+
def forward(self, x):
|
404 |
+
return self.down(x)
|
405 |
+
|
406 |
+
class DownBlock(nn.Module):
|
407 |
+
"""According to U-Net paper
|
408 |
+
|
409 |
+
'The contracting path follows the typical architecture of a convolutional network.
|
410 |
+
It consists of the repeated application of two 3x3 convolutions (unpadded convolutions),
|
411 |
+
each followed by a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2
|
412 |
+
for downsampling. At each downsampling step we double the number of feature channels.'
|
413 |
+
"""
|
414 |
+
|
415 |
+
def __init__(self, in_channels, out_channels, time_embedding_dim, use_attn=False, dropout=0, downsample=True, width=1):
|
416 |
+
"""in_channels will typically be half of out_channels"""
|
417 |
+
super().__init__()
|
418 |
+
self.width = width
|
419 |
+
self.use_attn = use_attn
|
420 |
+
self.do_downsample = downsample
|
421 |
+
|
422 |
+
self.blocks = nn.ModuleList()
|
423 |
+
for _ in range(width):
|
424 |
+
self.blocks.append(ResBlock(
|
425 |
+
channels=in_channels,
|
426 |
+
out_channels=out_channels,
|
427 |
+
emb_dim=time_embedding_dim,
|
428 |
+
dropout=dropout,
|
429 |
+
))
|
430 |
+
if self.use_attn:
|
431 |
+
self.blocks.append(SelfAttentionBlock(
|
432 |
+
channels=out_channels,
|
433 |
+
))
|
434 |
+
in_channels = out_channels
|
435 |
+
|
436 |
+
if self.do_downsample:
|
437 |
+
self.downsample = Downsample(out_channels)
|
438 |
+
|
439 |
+
def forward(self, x, t):
|
440 |
+
for block in self.blocks:
|
441 |
+
if isinstance(block, ResBlock):
|
442 |
+
x = block(x, t)
|
443 |
+
elif isinstance(block, SelfAttentionBlock):
|
444 |
+
x = block(x)
|
445 |
+
|
446 |
+
residual = x
|
447 |
+
if self.do_downsample:
|
448 |
+
x = self.downsample(x)
|
449 |
+
return x, residual
|
450 |
+
|
451 |
+
class Upsample(nn.Module):
|
452 |
+
def __init__(self, channels):
|
453 |
+
super().__init__()
|
454 |
+
self.upsample = nn.Upsample(scale_factor=2)
|
455 |
+
self.conv = nn.Conv2d(
|
456 |
+
in_channels=channels,
|
457 |
+
out_channels=channels,
|
458 |
+
kernel_size=3,
|
459 |
+
padding=1,
|
460 |
+
)
|
461 |
+
|
462 |
+
def forward(self, x):
|
463 |
+
x = self.upsample(x)
|
464 |
+
x = self.conv(x)
|
465 |
+
return x
|
466 |
+
|
467 |
+
class UpBlock(nn.Module):
|
468 |
+
"""According to U-Net paper
|
469 |
+
|
470 |
+
Every step in the expansive path consists of an upsampling of the feature map followed by a 2x2
|
471 |
+
convolution (“up-convolution”) that halves the number of feature channels, a concatenation with
|
472 |
+
the correspondingly cropped feature map from the contracting path, and two 3x3 convolutions,
|
473 |
+
each followed by a ReLU.
|
474 |
+
"""
|
475 |
+
|
476 |
+
def __init__(self, in_channels, out_channels, time_embedding_dim, use_attn=False, dropout=0, upsample=True, width=1):
|
477 |
+
"""in_channels will typically be double of out_channels
|
478 |
+
"""
|
479 |
+
super().__init__()
|
480 |
+
self.use_attn = use_attn
|
481 |
+
self.do_upsample = upsample
|
482 |
+
|
483 |
+
self.blocks = nn.ModuleList()
|
484 |
+
for _ in range(width):
|
485 |
+
self.blocks.append(ResBlock(
|
486 |
+
channels=in_channels,
|
487 |
+
out_channels=out_channels,
|
488 |
+
emb_dim=time_embedding_dim,
|
489 |
+
dropout=dropout,
|
490 |
+
))
|
491 |
+
if self.use_attn:
|
492 |
+
self.blocks.append(SelfAttentionBlock(
|
493 |
+
channels=out_channels,
|
494 |
+
))
|
495 |
+
in_channels = out_channels
|
496 |
+
|
497 |
+
if self.do_upsample:
|
498 |
+
self.upsample = Upsample(out_channels)
|
499 |
+
|
500 |
+
def forward(self, x, t):
|
501 |
+
for block in self.blocks:
|
502 |
+
if isinstance(block, ResBlock):
|
503 |
+
x = block(x, t)
|
504 |
+
elif isinstance(block, SelfAttentionBlock):
|
505 |
+
x = block(x)
|
506 |
+
|
507 |
+
if self.do_upsample:
|
508 |
+
x = self.upsample(x)
|
509 |
+
return x
|
510 |
+
|
511 |
+
class Bottleneck(nn.Module):
|
512 |
+
def __init__(self, channels, dropout, time_embedding_dim):
|
513 |
+
super().__init__()
|
514 |
+
in_channels = channels
|
515 |
+
out_channels = channels
|
516 |
+
self.resblock_1 = ResBlock(
|
517 |
+
channels=in_channels,
|
518 |
+
out_channels=out_channels,
|
519 |
+
dropout=dropout,
|
520 |
+
emb_dim=time_embedding_dim
|
521 |
+
)
|
522 |
+
self.attention_block = SelfAttentionBlock(
|
523 |
+
channels=out_channels,
|
524 |
+
)
|
525 |
+
self.resblock_2 = ResBlock(
|
526 |
+
channels=out_channels,
|
527 |
+
out_channels=out_channels,
|
528 |
+
dropout=dropout,
|
529 |
+
emb_dim=time_embedding_dim
|
530 |
+
)
|
531 |
+
|
532 |
+
def forward(self, x, t):
|
533 |
+
x = self.resblock_1(x, t)
|
534 |
+
x = self.attention_block(x)
|
535 |
+
x = self.resblock_2(x, t)
|
536 |
+
return x
|
537 |
+
|
538 |
+
class Unet(nn.Module):
|
539 |
+
def __init__(
|
540 |
+
self,
|
541 |
+
image_channels=3,
|
542 |
+
res_block_width=2,
|
543 |
+
starting_channels=128,
|
544 |
+
dropout=0,
|
545 |
+
channel_mults=(1, 2, 2, 4, 4),
|
546 |
+
attention_layers=(False, False, False, True, False)
|
547 |
+
):
|
548 |
+
super().__init__()
|
549 |
+
self.is_conditional = False
|
550 |
+
|
551 |
+
self.image_channels = image_channels
|
552 |
+
self.starting_channels = starting_channels
|
553 |
+
time_embedding_dim = 4 * starting_channels
|
554 |
+
|
555 |
+
self.time_encoding = SinusoidalPositionalEncoding(dim=starting_channels)
|
556 |
+
self.time_embedding = TimeEmbedding(model_dim=starting_channels, emb_dim=time_embedding_dim)
|
557 |
+
|
558 |
+
self.input = nn.Conv2d(3, starting_channels, kernel_size=3, padding=1)
|
559 |
+
|
560 |
+
current_channel_count = starting_channels
|
561 |
+
|
562 |
+
input_channel_counts = []
|
563 |
+
self.contracting_path = nn.ModuleList([])
|
564 |
+
for i, channel_multiplier in enumerate(channel_mults):
|
565 |
+
is_last_layer = i == len(channel_mults) - 1
|
566 |
+
next_channel_count = channel_multiplier * starting_channels
|
567 |
+
|
568 |
+
self.contracting_path.append(DownBlock(
|
569 |
+
in_channels=current_channel_count,
|
570 |
+
out_channels=next_channel_count,
|
571 |
+
time_embedding_dim=time_embedding_dim,
|
572 |
+
use_attn=attention_layers[i],
|
573 |
+
dropout=dropout,
|
574 |
+
downsample=not is_last_layer,
|
575 |
+
width=res_block_width,
|
576 |
+
))
|
577 |
+
current_channel_count = next_channel_count
|
578 |
+
|
579 |
+
input_channel_counts.append(current_channel_count)
|
580 |
+
|
581 |
+
self.bottleneck = Bottleneck(channels=current_channel_count, time_embedding_dim=time_embedding_dim, dropout=dropout)
|
582 |
+
|
583 |
+
self.expansive_path = nn.ModuleList([])
|
584 |
+
for i, channel_multiplier in enumerate(reversed(channel_mults)):
|
585 |
+
next_channel_count = channel_multiplier * starting_channels
|
586 |
+
|
587 |
+
self.expansive_path.append(UpBlock(
|
588 |
+
in_channels=current_channel_count + input_channel_counts.pop(),
|
589 |
+
out_channels=next_channel_count,
|
590 |
+
time_embedding_dim=time_embedding_dim,
|
591 |
+
use_attn=list(reversed(attention_layers))[i],
|
592 |
+
dropout=dropout,
|
593 |
+
upsample=i != len(channel_mults) - 1,
|
594 |
+
width=res_block_width,
|
595 |
+
))
|
596 |
+
current_channel_count = next_channel_count
|
597 |
+
|
598 |
+
last_conv = nn.Conv2d(
|
599 |
+
in_channels=starting_channels,
|
600 |
+
out_channels=image_channels,
|
601 |
+
kernel_size=3,
|
602 |
+
padding=1,
|
603 |
+
)
|
604 |
+
last_conv.weight.data.zero_()
|
605 |
+
|
606 |
+
self.head = nn.Sequential(
|
607 |
+
nn.GroupNorm(32, starting_channels),
|
608 |
+
nn.SiLU(),
|
609 |
+
last_conv,
|
610 |
+
)
|
611 |
+
|
612 |
+
def forward(self, x, t):
|
613 |
+
t = self.time_encoding(t)
|
614 |
+
return self._forward(x, t)
|
615 |
+
|
616 |
+
def _forward(self, x, t):
|
617 |
+
t = self.time_embedding(t)
|
618 |
+
|
619 |
+
x = self.input(x)
|
620 |
+
|
621 |
+
residuals = []
|
622 |
+
for contracting_block in self.contracting_path:
|
623 |
+
x, residual = contracting_block(x, t)
|
624 |
+
residuals.append(residual)
|
625 |
+
|
626 |
+
x = self.bottleneck(x, t)
|
627 |
+
|
628 |
+
for expansive_block in self.expansive_path:
|
629 |
+
# Add the residual
|
630 |
+
residual = residuals.pop()
|
631 |
+
x = torch.cat([x, residual], dim=1)
|
632 |
+
|
633 |
+
x = expansive_block(x, t)
|
634 |
+
|
635 |
+
x = self.head(x)
|
636 |
+
return x
|
637 |
+
|
638 |
+
class ConditionalUnet(nn.Module):
|
639 |
+
def __init__(self, unet, num_classes):
|
640 |
+
super().__init__()
|
641 |
+
self.is_conditional = True
|
642 |
+
|
643 |
+
self.unet = unet
|
644 |
+
self.num_classes = num_classes
|
645 |
+
|
646 |
+
self.class_embedding = nn.Embedding(num_classes, unet.starting_channels)
|
647 |
+
|
648 |
+
def forward(self, x, t, cond=None):
|
649 |
+
# cond: (batch_size, n), where n is the number of classes that we are conditioning on
|
650 |
+
t = self.unet.time_encoding(t)
|
651 |
+
|
652 |
+
if cond is not None:
|
653 |
+
cond = self.class_embedding(cond)
|
654 |
+
# sum across the classes so we get a single vector representing the set of classes
|
655 |
+
cond = cond.sum(dim=1)
|
656 |
+
t += cond
|
657 |
+
|
658 |
+
return self.unet._forward(x, t)
|
requirements.txt
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
streamlit
|
2 |
torch
|
3 |
torchvision
|
4 |
-
numpy
|
|
|
|
|
|
|
|
1 |
streamlit
|
2 |
torch
|
3 |
torchvision
|
4 |
+
numpy
|
5 |
+
einops
|
6 |
+
pillow
|
7 |
+
tqdm
|