movie-diffusion / diffusion.py
Anton Forsman
off by one
604cd2a
raw
history blame
8.64 kB
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
from PIL import Image
from einops import rearrange
import math
class GaussianDiffusion:
def __init__(self, model, noise_steps, beta_0, beta_T, image_size, channels=3, schedule="linear"):
"""
suggested betas for:
* linear schedule: 1e-4, 0.02
model: the model to be trained (nn.Module)
noise_steps: the number of steps to apply noise (int)
beta_0: the initial value of beta (float)
beta_T: the final value of beta (float)
image_size: the size of the image (int, int)
"""
self.device = 'cpu'
self.channels = channels
self.model = model
self.noise_steps = noise_steps
self.beta_0 = beta_0
self.beta_T = beta_T
self.image_size = image_size
self.betas = self.beta_schedule(schedule=schedule)
self.alphas = 1.0 - self.betas
# cumulative product of alphas, so we can optimize forward process calculation
self.alpha_hat = torch.cumprod(self.alphas, dim=0)
def beta_schedule(self, schedule="cosine"):
if schedule == "linear":
return torch.linspace(self.beta_0, self.beta_T, self.noise_steps).to(self.device)
elif schedule == "cosine":
return self.betas_for_cosine(self.noise_steps)
elif schedule == "sigmoid":
return self.betas_for_sigmoid(self.noise_steps)
@staticmethod
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def betas_for_sigmoid(self, num_diffusion_timesteps, start=-3,end=3, tau=1.0, clip_min = 1e-9):
betas = []
v_start = self.sigmoid(start/tau)
v_end = self.sigmoid(end/tau)
for t in range(num_diffusion_timesteps):
t_float = float(t/num_diffusion_timesteps)
output0 = self.sigmoid((t_float* (end-start)+start)/tau)
output = (v_end-output0) / (v_end-v_start)
betas.append(np.clip(output*.2, clip_min,.2))
return torch.flip(torch.tensor(betas).to(self.device),dims=[0]).float()
def betas_for_cosine(self,num_steps,start=0,end=1,tau=1,clip_min=1e-9):
v_start = math.cos(start*math.pi / 2) ** (2 * tau)
betas = []
v_end = math.cos(end* math.pi/2) ** 2*tau
for t in range(num_steps):
t_float = float(t)/num_steps
output = math.cos((t_float* (end-start)+start)*math.pi/2)**(2*tau)
output = (v_end - output) / (v_end-v_start)
betas.append(np.clip(output*.2,clip_min,.2))
return torch.flip(torch.tensor(betas).to(self.device),dims=[0]).float()
def sample_time_steps(self, batch_size=1):
return torch.randint(0, self.noise_steps, (batch_size,)).to(self.device)
def to(self,device):
self.device = device
self.betas = self.betas.to(device)
self.alphas = self.alphas.to(device)
self.alpha_hat = self.alpha_hat.to(device)
def q(self, x, t):
"""
Forward process
"""
pass
def p(self, x, t):
"""
Backward process
"""
pass
def apply_noise(self, x, t):
# force x to be (batch_size, image_width, image_height, channels)
if len(x.shape) == 3:
x = x.unsqueeze(0)
if type(t) == int:
t = torch.tensor([t])
#print(f'Shape -> {x.shape}, len -> {len(x.shape)}')
sqrt_alpha_hat = torch.sqrt(torch.tensor([self.alpha_hat[t_] for t_ in t]).to(self.device))
sqrt_one_minus_alpha_hat = torch.sqrt(torch.tensor([1.0 - self.alpha_hat[t_] for t_ in t]).to(self.device))
# standard normal distribution
epsilon = torch.randn_like(x).to(self.device)
# Eq 2. in DDPM paper
#noisy_image = sqrt_alpha_hat * x + sqrt_one_minus_alpha_hat * epsilon
"""print(f'''
Shape of x {x.shape}
Shape of sqrt {sqrt_one_minus_alpha_hat.shape}''')"""
try:
#print(x.shape)
#noisy_image = torch.einsum("b,bwhc->bwhc", sqrt_alpha_hat, x.to(self.device)) + torch.einsum("b,bwhc->bwhc", sqrt_one_minus_alpha_hat, epsilon)
noisy_image = torch.einsum("b,bcwh->bcwh", sqrt_alpha_hat, x.to(self.device)) + torch.einsum("b,bcwh->bcwh", sqrt_one_minus_alpha_hat, epsilon)
except:
print(f'Failed image: shape {x.shape}')
#print(f'Noisy image -> {noisy_image.shape}')
# returning noisy iamge and the noise which was added to the image
#return noisy_image, epsilon
#return torch.clip(noisy_image, -1.0, 1.0), epsilon
return noisy_image, epsilon
@staticmethod
def normalize_image(x):
# normalize image to [-1, 1]
return x / 255.0 * 2.0 - 1.0
@staticmethod
def denormalize_image(x):
# denormalize image to [0, 255]
return (x + 1.0) / 2.0 * 255.0
def sample_step(self, x, t, cond):
batch_size = x.shape[0]
device = x.device
z = torch.randn_like(x) if t >= 1 else torch.zeros_like(x)
z = z.to(device)
alpha = self.alphas[t]
one_over_sqrt_alpha = 1.0 / torch.sqrt(alpha)
one_minus_alpha = 1.0 - alpha
sqrt_one_minus_alpha_hat = torch.sqrt(1.0 - self.alpha_hat[t])
beta_hat = (1 - self.alpha_hat[t-1]) / (1 - self.alpha_hat[t]) * self.betas[t]
beta = self.betas[t]
# should we reshape the params to (batch_size, 1, 1, 1) ?
# we can either use beta_hat or beta_t
# std = torch.sqrt(beta_hat)
std = torch.sqrt(beta)
# mean + variance * z
if cond is not None:
predicted_noise = self.model(x, torch.tensor([t]).repeat(batch_size).to(device), cond)
else:
predicted_noise = self.model(x, torch.tensor([t]).repeat(batch_size).to(device))
mean = one_over_sqrt_alpha * (x - one_minus_alpha / sqrt_one_minus_alpha_hat * predicted_noise)
x_t_minus_1 = mean + std * z
return x_t_minus_1
def sample(self, num_samples, show_progress=True, cond=None, x0=None, cb=None):
"""
Sample from the model
"""
#cond = None
if cond == None:
# cond is arange()
assert num_samples <= self.model.num_classes, "num_samples must be less than or equal to the number of classes"
cond = torch.arange(self.model.num_classes)[:num_samples].to(self.device)
cond = rearrange(cond, 'i -> i ()')
# Inpainting
self.model.eval()
image_versions = []
with torch.no_grad():
x = torch.randn(num_samples, self.channels, *self.image_size).to(self.device)
if x0 is not None:
x0 = x0.to(self.device)
mask = x0 != -1
x_noised = self.apply_noise(x0,self.noise_steps -1)[0].to(self.device)
new_x = x
new_x[mask] = x_noised[mask]
x = new_x
it = reversed(range(1, self.noise_steps))
if show_progress:
it = tqdm(it)
for t in it:
temp_image = self.denormalize_image(torch.clip(x, -1, 1)).clone().squeeze(0)
if cb is not None:
cb(temp_image, 1-t/(self.noise_steps+1))
image_versions.append(self.denormalize_image(torch.clip(x, -1, 1)).clone().squeeze(0))
if x0 is not None and t > 80:
x_noised = self.apply_noise(x0,t)[0]
new_x = x
new_x[mask] = x_noised[mask]
x = new_x
x = self.sample_step(x, t, cond)
self.model.train()
x = torch.clip(x, -1.0, 1.0)
return self.denormalize_image(x), image_versions
def validate(self, dataloader):
"""
Calculate the loss on the validation set
"""
self.model.eval()
acc_loss = 0
with torch.no_grad():
for (image, cond) in dataloader:
t = self.sample_time_steps(batch_size=image.shape[0])
noisy_image, added_noise = self.apply_noise(image, t)
noisy_image = noisy_image.to(self.device)
added_noise = added_noise.to(self.device)
cond = cond.to(self.device)
predicted_noise = self.model(noisy_image, t, cond)
loss = nn.MSELoss()(predicted_noise, added_noise)
acc_loss += loss.item()
self.model.train()
return acc_loss / len(dataloader)
class DiffusionImageAPI:
def __init__(self, diffusion_model):
self.diffusion_model = diffusion_model
def get_noisy_image(self, image, t):
x = torch.tensor(np.array(image))
x = self.diffusion_model.normalize_image(x)
y, _ = self.diffusion_model.apply_noise(x, t)
y = self.diffusion_model.denormalize_image(y)
#print(f"Shape of Image: {y.shape}")
return Image.fromarray(y.squeeze(0).numpy().astype(np.uint8))
def get_noisy_images(self, image, time_steps):
"""
image: the image to be processed PIL.Image
time_steps: the number of time steps to apply noise (int)
"""
return [self.get_noisy_image(image, int(t)) for t in time_steps]
def tensor_to_image(self, tensor):
return Image.fromarray(tensor.cpu().permute(1, 2, 0).numpy().astype(np.uint8))