Spaces:
Paused
Paused
File size: 8,638 Bytes
098fc8a 585cc65 098fc8a cdd9a51 098fc8a cdd9a51 098fc8a cdd9a51 098fc8a 585cc65 604cd2a 098fc8a cdd9a51 098fc8a c41ef46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
from PIL import Image
from einops import rearrange
import math
class GaussianDiffusion:
def __init__(self, model, noise_steps, beta_0, beta_T, image_size, channels=3, schedule="linear"):
"""
suggested betas for:
* linear schedule: 1e-4, 0.02
model: the model to be trained (nn.Module)
noise_steps: the number of steps to apply noise (int)
beta_0: the initial value of beta (float)
beta_T: the final value of beta (float)
image_size: the size of the image (int, int)
"""
self.device = 'cpu'
self.channels = channels
self.model = model
self.noise_steps = noise_steps
self.beta_0 = beta_0
self.beta_T = beta_T
self.image_size = image_size
self.betas = self.beta_schedule(schedule=schedule)
self.alphas = 1.0 - self.betas
# cumulative product of alphas, so we can optimize forward process calculation
self.alpha_hat = torch.cumprod(self.alphas, dim=0)
def beta_schedule(self, schedule="cosine"):
if schedule == "linear":
return torch.linspace(self.beta_0, self.beta_T, self.noise_steps).to(self.device)
elif schedule == "cosine":
return self.betas_for_cosine(self.noise_steps)
elif schedule == "sigmoid":
return self.betas_for_sigmoid(self.noise_steps)
@staticmethod
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def betas_for_sigmoid(self, num_diffusion_timesteps, start=-3,end=3, tau=1.0, clip_min = 1e-9):
betas = []
v_start = self.sigmoid(start/tau)
v_end = self.sigmoid(end/tau)
for t in range(num_diffusion_timesteps):
t_float = float(t/num_diffusion_timesteps)
output0 = self.sigmoid((t_float* (end-start)+start)/tau)
output = (v_end-output0) / (v_end-v_start)
betas.append(np.clip(output*.2, clip_min,.2))
return torch.flip(torch.tensor(betas).to(self.device),dims=[0]).float()
def betas_for_cosine(self,num_steps,start=0,end=1,tau=1,clip_min=1e-9):
v_start = math.cos(start*math.pi / 2) ** (2 * tau)
betas = []
v_end = math.cos(end* math.pi/2) ** 2*tau
for t in range(num_steps):
t_float = float(t)/num_steps
output = math.cos((t_float* (end-start)+start)*math.pi/2)**(2*tau)
output = (v_end - output) / (v_end-v_start)
betas.append(np.clip(output*.2,clip_min,.2))
return torch.flip(torch.tensor(betas).to(self.device),dims=[0]).float()
def sample_time_steps(self, batch_size=1):
return torch.randint(0, self.noise_steps, (batch_size,)).to(self.device)
def to(self,device):
self.device = device
self.betas = self.betas.to(device)
self.alphas = self.alphas.to(device)
self.alpha_hat = self.alpha_hat.to(device)
def q(self, x, t):
"""
Forward process
"""
pass
def p(self, x, t):
"""
Backward process
"""
pass
def apply_noise(self, x, t):
# force x to be (batch_size, image_width, image_height, channels)
if len(x.shape) == 3:
x = x.unsqueeze(0)
if type(t) == int:
t = torch.tensor([t])
#print(f'Shape -> {x.shape}, len -> {len(x.shape)}')
sqrt_alpha_hat = torch.sqrt(torch.tensor([self.alpha_hat[t_] for t_ in t]).to(self.device))
sqrt_one_minus_alpha_hat = torch.sqrt(torch.tensor([1.0 - self.alpha_hat[t_] for t_ in t]).to(self.device))
# standard normal distribution
epsilon = torch.randn_like(x).to(self.device)
# Eq 2. in DDPM paper
#noisy_image = sqrt_alpha_hat * x + sqrt_one_minus_alpha_hat * epsilon
"""print(f'''
Shape of x {x.shape}
Shape of sqrt {sqrt_one_minus_alpha_hat.shape}''')"""
try:
#print(x.shape)
#noisy_image = torch.einsum("b,bwhc->bwhc", sqrt_alpha_hat, x.to(self.device)) + torch.einsum("b,bwhc->bwhc", sqrt_one_minus_alpha_hat, epsilon)
noisy_image = torch.einsum("b,bcwh->bcwh", sqrt_alpha_hat, x.to(self.device)) + torch.einsum("b,bcwh->bcwh", sqrt_one_minus_alpha_hat, epsilon)
except:
print(f'Failed image: shape {x.shape}')
#print(f'Noisy image -> {noisy_image.shape}')
# returning noisy iamge and the noise which was added to the image
#return noisy_image, epsilon
#return torch.clip(noisy_image, -1.0, 1.0), epsilon
return noisy_image, epsilon
@staticmethod
def normalize_image(x):
# normalize image to [-1, 1]
return x / 255.0 * 2.0 - 1.0
@staticmethod
def denormalize_image(x):
# denormalize image to [0, 255]
return (x + 1.0) / 2.0 * 255.0
def sample_step(self, x, t, cond):
batch_size = x.shape[0]
device = x.device
z = torch.randn_like(x) if t >= 1 else torch.zeros_like(x)
z = z.to(device)
alpha = self.alphas[t]
one_over_sqrt_alpha = 1.0 / torch.sqrt(alpha)
one_minus_alpha = 1.0 - alpha
sqrt_one_minus_alpha_hat = torch.sqrt(1.0 - self.alpha_hat[t])
beta_hat = (1 - self.alpha_hat[t-1]) / (1 - self.alpha_hat[t]) * self.betas[t]
beta = self.betas[t]
# should we reshape the params to (batch_size, 1, 1, 1) ?
# we can either use beta_hat or beta_t
# std = torch.sqrt(beta_hat)
std = torch.sqrt(beta)
# mean + variance * z
if cond is not None:
predicted_noise = self.model(x, torch.tensor([t]).repeat(batch_size).to(device), cond)
else:
predicted_noise = self.model(x, torch.tensor([t]).repeat(batch_size).to(device))
mean = one_over_sqrt_alpha * (x - one_minus_alpha / sqrt_one_minus_alpha_hat * predicted_noise)
x_t_minus_1 = mean + std * z
return x_t_minus_1
def sample(self, num_samples, show_progress=True, cond=None, x0=None, cb=None):
"""
Sample from the model
"""
#cond = None
if cond == None:
# cond is arange()
assert num_samples <= self.model.num_classes, "num_samples must be less than or equal to the number of classes"
cond = torch.arange(self.model.num_classes)[:num_samples].to(self.device)
cond = rearrange(cond, 'i -> i ()')
# Inpainting
self.model.eval()
image_versions = []
with torch.no_grad():
x = torch.randn(num_samples, self.channels, *self.image_size).to(self.device)
if x0 is not None:
x0 = x0.to(self.device)
mask = x0 != -1
x_noised = self.apply_noise(x0,self.noise_steps -1)[0].to(self.device)
new_x = x
new_x[mask] = x_noised[mask]
x = new_x
it = reversed(range(1, self.noise_steps))
if show_progress:
it = tqdm(it)
for t in it:
temp_image = self.denormalize_image(torch.clip(x, -1, 1)).clone().squeeze(0)
if cb is not None:
cb(temp_image, 1-t/(self.noise_steps+1))
image_versions.append(self.denormalize_image(torch.clip(x, -1, 1)).clone().squeeze(0))
if x0 is not None and t > 80:
x_noised = self.apply_noise(x0,t)[0]
new_x = x
new_x[mask] = x_noised[mask]
x = new_x
x = self.sample_step(x, t, cond)
self.model.train()
x = torch.clip(x, -1.0, 1.0)
return self.denormalize_image(x), image_versions
def validate(self, dataloader):
"""
Calculate the loss on the validation set
"""
self.model.eval()
acc_loss = 0
with torch.no_grad():
for (image, cond) in dataloader:
t = self.sample_time_steps(batch_size=image.shape[0])
noisy_image, added_noise = self.apply_noise(image, t)
noisy_image = noisy_image.to(self.device)
added_noise = added_noise.to(self.device)
cond = cond.to(self.device)
predicted_noise = self.model(noisy_image, t, cond)
loss = nn.MSELoss()(predicted_noise, added_noise)
acc_loss += loss.item()
self.model.train()
return acc_loss / len(dataloader)
class DiffusionImageAPI:
def __init__(self, diffusion_model):
self.diffusion_model = diffusion_model
def get_noisy_image(self, image, t):
x = torch.tensor(np.array(image))
x = self.diffusion_model.normalize_image(x)
y, _ = self.diffusion_model.apply_noise(x, t)
y = self.diffusion_model.denormalize_image(y)
#print(f"Shape of Image: {y.shape}")
return Image.fromarray(y.squeeze(0).numpy().astype(np.uint8))
def get_noisy_images(self, image, time_steps):
"""
image: the image to be processed PIL.Image
time_steps: the number of time steps to apply noise (int)
"""
return [self.get_noisy_image(image, int(t)) for t in time_steps]
def tensor_to_image(self, tensor):
return Image.fromarray(tensor.cpu().permute(1, 2, 0).numpy().astype(np.uint8))
|