File size: 8,638 Bytes
098fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585cc65
098fc8a
 
 
cdd9a51
 
098fc8a
 
 
 
 
cdd9a51
 
098fc8a
 
 
 
cdd9a51
 
 
 
 
 
 
 
 
 
 
 
098fc8a
 
 
 
585cc65
 
604cd2a
098fc8a
cdd9a51
 
 
 
 
 
 
 
098fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c41ef46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
from PIL import Image
from einops import rearrange
import math 
class GaussianDiffusion:
  def __init__(self, model, noise_steps, beta_0, beta_T, image_size, channels=3, schedule="linear"):
    """
    suggested betas for:
      * linear schedule: 1e-4, 0.02

    model: the model to be trained (nn.Module)
    noise_steps: the number of steps to apply noise (int)
    beta_0: the initial value of beta (float)
    beta_T: the final value of beta (float)
    image_size: the size of the image (int, int)
    """
    self.device = 'cpu'
    self.channels = channels

    self.model = model
    self.noise_steps = noise_steps
    self.beta_0 = beta_0
    self.beta_T = beta_T
    self.image_size = image_size

    self.betas = self.beta_schedule(schedule=schedule)
    self.alphas = 1.0 - self.betas
    # cumulative product of alphas, so we can optimize forward process calculation
    self.alpha_hat = torch.cumprod(self.alphas, dim=0)

  def beta_schedule(self, schedule="cosine"):
    if schedule == "linear":
      return torch.linspace(self.beta_0, self.beta_T, self.noise_steps).to(self.device)
    elif schedule == "cosine":
      return self.betas_for_cosine(self.noise_steps)
    elif schedule == "sigmoid":
      return self.betas_for_sigmoid(self.noise_steps)
  
  @staticmethod 
  def sigmoid(x):
    return 1 / (1 + np.exp(-x))

  def betas_for_sigmoid(self, num_diffusion_timesteps, start=-3,end=3, tau=1.0, clip_min = 1e-9):
    betas = []
    v_start = self.sigmoid(start/tau)
    v_end = self.sigmoid(end/tau)
    for t in range(num_diffusion_timesteps):
      t_float = float(t/num_diffusion_timesteps)
      output0 = self.sigmoid((t_float* (end-start)+start)/tau)
      output = (v_end-output0) / (v_end-v_start)
      betas.append(np.clip(output*.2, clip_min,.2))
    return torch.flip(torch.tensor(betas).to(self.device),dims=[0]).float()

  def betas_for_cosine(self,num_steps,start=0,end=1,tau=1,clip_min=1e-9):
    v_start = math.cos(start*math.pi / 2) ** (2 * tau)
    betas = []
    v_end = math.cos(end* math.pi/2) ** 2*tau
    for t in range(num_steps):
      t_float = float(t)/num_steps
      output = math.cos((t_float* (end-start)+start)*math.pi/2)**(2*tau)
      output = (v_end - output) / (v_end-v_start)
      betas.append(np.clip(output*.2,clip_min,.2))
    return torch.flip(torch.tensor(betas).to(self.device),dims=[0]).float()
  

  def sample_time_steps(self, batch_size=1):
    return torch.randint(0, self.noise_steps, (batch_size,)).to(self.device)
  
  def to(self,device):
    self.device = device
    self.betas = self.betas.to(device)
    self.alphas = self.alphas.to(device)
    self.alpha_hat = self.alpha_hat.to(device)

  
  def q(self, x, t):
    """
    Forward process
    """
    pass
  
  def p(self, x, t):
    """
    Backward process
    """
    pass 

  
  def apply_noise(self, x, t):
    # force x to be (batch_size, image_width, image_height, channels)
    if len(x.shape) == 3:
      x = x.unsqueeze(0)
    if type(t) == int:
      t = torch.tensor([t])
    #print(f'Shape -> {x.shape}, len -> {len(x.shape)}')
    sqrt_alpha_hat = torch.sqrt(torch.tensor([self.alpha_hat[t_] for t_ in t]).to(self.device))
    sqrt_one_minus_alpha_hat = torch.sqrt(torch.tensor([1.0 - self.alpha_hat[t_] for t_ in t]).to(self.device))
    # standard normal distribution
    epsilon = torch.randn_like(x).to(self.device)

    # Eq 2. in DDPM paper
    #noisy_image = sqrt_alpha_hat * x + sqrt_one_minus_alpha_hat * epsilon

    """print(f'''
              Shape of x {x.shape}
              Shape of sqrt {sqrt_one_minus_alpha_hat.shape}''')"""
    
    try:
      #print(x.shape)
      #noisy_image = torch.einsum("b,bwhc->bwhc", sqrt_alpha_hat, x.to(self.device)) + torch.einsum("b,bwhc->bwhc", sqrt_one_minus_alpha_hat, epsilon)
      noisy_image = torch.einsum("b,bcwh->bcwh", sqrt_alpha_hat, x.to(self.device)) + torch.einsum("b,bcwh->bcwh", sqrt_one_minus_alpha_hat, epsilon)
    except:
      print(f'Failed image: shape {x.shape}')
      
    
    #print(f'Noisy image -> {noisy_image.shape}')
    # returning noisy iamge and the noise which was added to the image
    #return noisy_image, epsilon
    #return torch.clip(noisy_image, -1.0, 1.0), epsilon
    return noisy_image, epsilon
  
  @staticmethod
  def normalize_image(x):
    # normalize image to [-1, 1]
    return x / 255.0 * 2.0 - 1.0
  
  @staticmethod
  def denormalize_image(x):
    # denormalize image to [0, 255]
    return (x + 1.0) / 2.0 * 255.0
  
  def sample_step(self, x, t, cond):
    batch_size = x.shape[0]
    device = x.device
    z = torch.randn_like(x) if t >= 1 else torch.zeros_like(x)
    z = z.to(device)
    alpha = self.alphas[t]
    one_over_sqrt_alpha = 1.0 / torch.sqrt(alpha)
    one_minus_alpha = 1.0 - alpha

    sqrt_one_minus_alpha_hat = torch.sqrt(1.0 - self.alpha_hat[t])
    beta_hat = (1 - self.alpha_hat[t-1]) / (1 - self.alpha_hat[t]) * self.betas[t]
    beta = self.betas[t]
    # should we reshape the params to (batch_size, 1, 1, 1) ?
    

    # we can either use beta_hat or beta_t
    # std = torch.sqrt(beta_hat)
    std = torch.sqrt(beta)
    # mean + variance * z
    if cond is not None:
      predicted_noise = self.model(x, torch.tensor([t]).repeat(batch_size).to(device), cond)
    else:
      predicted_noise = self.model(x, torch.tensor([t]).repeat(batch_size).to(device))
    mean = one_over_sqrt_alpha * (x - one_minus_alpha / sqrt_one_minus_alpha_hat * predicted_noise)
    x_t_minus_1 = mean + std * z

    return x_t_minus_1
  
  def sample(self, num_samples, show_progress=True, cond=None, x0=None, cb=None):
    """
    Sample from the model
    """
    #cond = None
    if cond == None:
      # cond is arange()
      assert num_samples <= self.model.num_classes, "num_samples must be less than or equal to the number of classes"
      cond = torch.arange(self.model.num_classes)[:num_samples].to(self.device)
      cond = rearrange(cond, 'i -> i ()')


    # Inpainting
    self.model.eval()
    image_versions = []
    with torch.no_grad():
      x = torch.randn(num_samples, self.channels, *self.image_size).to(self.device)
      

      if x0 is not None:
        x0 = x0.to(self.device)
        mask = x0 != -1
        x_noised = self.apply_noise(x0,self.noise_steps -1)[0].to(self.device)
        new_x = x
        new_x[mask] = x_noised[mask]
        
        x = new_x


      it = reversed(range(1, self.noise_steps))
      if show_progress:
        it = tqdm(it)
      for t in it:
        temp_image = self.denormalize_image(torch.clip(x, -1, 1)).clone().squeeze(0)
        if cb is not None:
          cb(temp_image, 1-t/(self.noise_steps+1))
        image_versions.append(self.denormalize_image(torch.clip(x, -1, 1)).clone().squeeze(0))
        
        if x0 is not None and t > 80:
          x_noised = self.apply_noise(x0,t)[0]
          new_x = x
          new_x[mask] = x_noised[mask]

          x = new_x
          
        x = self.sample_step(x, t, cond)
    self.model.train()
    x = torch.clip(x, -1.0, 1.0)
    return self.denormalize_image(x), image_versions
  
  def validate(self, dataloader):
    """
    Calculate the loss on the validation set
    """
    self.model.eval()
    acc_loss = 0
    with torch.no_grad():
      for (image, cond) in dataloader:
        t = self.sample_time_steps(batch_size=image.shape[0])
        noisy_image, added_noise = self.apply_noise(image, t)
        noisy_image = noisy_image.to(self.device)
        added_noise = added_noise.to(self.device)
        cond = cond.to(self.device)
        predicted_noise = self.model(noisy_image, t, cond)
        loss = nn.MSELoss()(predicted_noise, added_noise)
        acc_loss += loss.item()
    self.model.train()
    return acc_loss / len(dataloader)

class DiffusionImageAPI:
  def __init__(self, diffusion_model):
    self.diffusion_model = diffusion_model
  
  def get_noisy_image(self, image, t):
    x = torch.tensor(np.array(image))
    
    x = self.diffusion_model.normalize_image(x)

    y, _ = self.diffusion_model.apply_noise(x, t)
    
    y = self.diffusion_model.denormalize_image(y)
    #print(f"Shape of Image: {y.shape}")

    return Image.fromarray(y.squeeze(0).numpy().astype(np.uint8))

  
  def get_noisy_images(self, image, time_steps):
    """
    image: the image to be processed PIL.Image
    time_steps: the number of time steps to apply noise (int)
    """

    return [self.get_noisy_image(image, int(t)) for t in time_steps]
  
  def tensor_to_image(self, tensor):
    return Image.fromarray(tensor.cpu().permute(1, 2, 0).numpy().astype(np.uint8))