Spaces:
Sleeping
Sleeping
Debug
Browse files- app.py +33 -23
- milestone3/milestone3.py +29 -13
app.py
CHANGED
@@ -18,9 +18,9 @@ def analyze(model_name: str, text: str, top_k=1) -> dict:
|
|
18 |
return classifier(text)
|
19 |
|
20 |
# App title
|
21 |
-
st.title("Sentiment Analysis App -
|
22 |
st.write("This app is to analyze the sentiments behind a text.")
|
23 |
-
st.write("
|
24 |
|
25 |
# Model hub
|
26 |
model_descrip = {
|
@@ -34,25 +34,7 @@ model_descrip = {
|
|
34 |
Labels: POS; NEU; NEG"
|
35 |
}
|
36 |
|
37 |
-
df = pd.read_csv("/milestone3/comp/test_comment.csv")
|
38 |
-
test_texts = df["comment_text"].values
|
39 |
-
sample_texts = np.random.choice(test_texts, size=sample_text_num, replace=False)
|
40 |
|
41 |
-
init_table_dict = {
|
42 |
-
"Text": [],
|
43 |
-
"Highest Toxicity Class": [],
|
44 |
-
"Highest Score": [],
|
45 |
-
"Second Highest Toxicity Class": [],
|
46 |
-
"Second Highest Score": []
|
47 |
-
}
|
48 |
-
|
49 |
-
for text in sample_texts:
|
50 |
-
result = analyze(fine_tuned_model, text, top_k=2)
|
51 |
-
init_table_dict["Text"].append(text[:50])
|
52 |
-
init_table_dict["Highest Toxicity Class"].append(result[0][0]['label'])
|
53 |
-
init_table_dict["Highest Score"].append(result[0][0]['score'])
|
54 |
-
init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label'])
|
55 |
-
init_table_dict["Second Highest Score"].append(result[0][1]['score'])
|
56 |
|
57 |
|
58 |
user_input = st.text_input("Enter your text:", value="NYU is the better than Columbia.")
|
@@ -73,10 +55,38 @@ if st.button("Analyze"):
|
|
73 |
with st.spinner("Hang on.... Analyzing..."):
|
74 |
if user_model == fine_tuned_model:
|
75 |
result = analyze(user_model, user_input, top_k=2)
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
df = pd.DataFrame(init_table_dict)
|
79 |
-
st.dataframe(df)
|
80 |
|
81 |
else:
|
82 |
result = analyze(user_model, user_input)
|
|
|
18 |
return classifier(text)
|
19 |
|
20 |
# App title
|
21 |
+
st.title("Sentiment Analysis App - Milestone3")
|
22 |
st.write("This app is to analyze the sentiments behind a text.")
|
23 |
+
st.write("You can choose to use my fine-tuned model or pre-trained models.")
|
24 |
|
25 |
# Model hub
|
26 |
model_descrip = {
|
|
|
34 |
Labels: POS; NEU; NEG"
|
35 |
}
|
36 |
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
user_input = st.text_input("Enter your text:", value="NYU is the better than Columbia.")
|
|
|
55 |
with st.spinner("Hang on.... Analyzing..."):
|
56 |
if user_model == fine_tuned_model:
|
57 |
result = analyze(user_model, user_input, top_k=2)
|
58 |
+
result_dict = {
|
59 |
+
"Text": [user_input],
|
60 |
+
"Highest Toxicity Class": [result[0][0]['label']],
|
61 |
+
"Highest Score": [result[0][0]['score']],
|
62 |
+
"Second Highest Toxicity Class": [result[0][1]['label']],
|
63 |
+
"Second Highest Score": [result[0][1]['score']]
|
64 |
+
}
|
65 |
+
st.dataframe(pd.DataFrame(result_dict))
|
66 |
+
if st.button("Click to generate ten sample analysis"):
|
67 |
+
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
68 |
+
test_texts = df["comment_text"].values
|
69 |
+
sample_texts = np.random.choice(test_texts, size=sample_text_num, replace=False)
|
70 |
+
|
71 |
+
init_table_dict = {
|
72 |
+
"Text": [],
|
73 |
+
"Highest Toxicity Class": [],
|
74 |
+
"Highest Score": [],
|
75 |
+
"Second Highest Toxicity Class": [],
|
76 |
+
"Second Highest Score": []
|
77 |
+
}
|
78 |
+
|
79 |
+
for text in sample_texts:
|
80 |
+
result = analyze(fine_tuned_model, text[:50], top_k=2)
|
81 |
+
init_table_dict["Text"].append(text[:50])
|
82 |
+
init_table_dict["Highest Toxicity Class"].append(result[0][0]['label'])
|
83 |
+
init_table_dict["Highest Score"].append(result[0][0]['score'])
|
84 |
+
init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label'])
|
85 |
+
init_table_dict["Second Highest Score"].append(result[0][1]['score'])
|
86 |
+
st.dataframe(pd.DataFrame(init_table_dict))
|
87 |
+
else:
|
88 |
+
st.write("(─‿‿─)")
|
89 |
|
|
|
|
|
90 |
|
91 |
else:
|
92 |
result = analyze(user_model, user_input)
|
milestone3/milestone3.py
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
-
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
|
12 |
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
# result = analyze(user_model, user_input, top_k=
|
17 |
|
18 |
# print(result[0][0]['label'])
|
19 |
|
@@ -22,4 +22,20 @@ import numpy as np
|
|
22 |
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
23 |
test_texts = df["comment_text"].values
|
24 |
sample_texts = np.random.choice(test_texts, size=10, replace=False)
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
2 |
|
3 |
+
def analyze(model_name: str, text: str, top_k=1) -> dict:
|
4 |
+
'''
|
5 |
+
Output result of sentiment analysis of a text through a defined model
|
6 |
+
'''
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, top_k=top_k)
|
10 |
+
return classifier(text)
|
11 |
|
12 |
|
13 |
+
user_input = "Go fuck yourself"
|
14 |
+
user_model = "andyqin18/test-finetuned"
|
15 |
|
16 |
+
# result = analyze(user_model, user_input, top_k=2)
|
17 |
|
18 |
# print(result[0][0]['label'])
|
19 |
|
|
|
22 |
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
23 |
test_texts = df["comment_text"].values
|
24 |
sample_texts = np.random.choice(test_texts, size=10, replace=False)
|
25 |
+
init_table_dict = {
|
26 |
+
"Text": [],
|
27 |
+
"Highest Toxicity Class": [],
|
28 |
+
"Highest Score": [],
|
29 |
+
"Second Highest Toxicity Class": [],
|
30 |
+
"Second Highest Score": []
|
31 |
+
}
|
32 |
+
|
33 |
+
for text in sample_texts:
|
34 |
+
result = analyze(user_model, text, top_k=2)
|
35 |
+
init_table_dict["Text"].append(text[:50])
|
36 |
+
init_table_dict["Highest Toxicity Class"].append(result[0][0]['label'])
|
37 |
+
init_table_dict["Highest Score"].append(result[0][0]['score'])
|
38 |
+
init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label'])
|
39 |
+
init_table_dict["Second Highest Score"].append(result[0][1]['score'])
|
40 |
+
|
41 |
+
print(init_table_dict)
|